scholarly journals Tailoring synthetic polymeric biomaterials towards nerve tissue engineering: a review

2019 ◽  
Vol 47 (1) ◽  
pp. 3524-3539 ◽  
Author(s):  
Hamed Amani ◽  
Hanif Kazerooni ◽  
Hossein Hassanpoor ◽  
Abolfazl Akbarzadeh ◽  
Hamidreza Pazoki-Toroudi
2021 ◽  
Vol 22 (7) ◽  
pp. 3536
Author(s):  
Hongyun Xuan ◽  
Biyun Li ◽  
Feng Xiong ◽  
Shuyuan Wu ◽  
Zhuojun Zhang ◽  
...  

Despite the existence of many attempts at nerve tissue engineering, there is no ideal strategy to date for effectively treating defective peripheral nerve tissue. In the present study, well-aligned poly (L-lactic acid) (PLLA) nanofibers with varied nano-porous surface structures were designed within different ambient humidity levels using the stable jet electrospinning (SJES) technique. Nanofibers have the capacity to inhibit bacterial adhesion, especially with respect to Staphylococcus aureus (S. aureus). It was noteworthy to find that the large nano-porous fibers were less detrimentally affected by S. aureus than smaller fibers. Large nano-pores furthermore proved more conducive to the proliferation and differentiation of neural stem cells (NSCs), while small nano-pores were more beneficial to NSC migration. Thus, this study concluded that well-aligned fibers with varied nano-porous surface structures could reduce bacterial colonization and enhance cellular responses, which could be used as promising material in tissue engineering, especially for neuro-regeneration.


2021 ◽  
Vol 138 (26) ◽  
pp. 50624
Author(s):  
Sadaf Dadashkhan ◽  
Shiva Irani ◽  
Shahin Bonakdar ◽  
Behafarid Ghalandari

2020 ◽  
Vol 195 ◽  
pp. 108982 ◽  
Author(s):  
Yi-Wen Chen ◽  
Kan Wang ◽  
Chia-Che Ho ◽  
Chia-Tze Kao ◽  
Hooi Yee Ng ◽  
...  

2015 ◽  
Vol 15 (6) ◽  
pp. 612-621 ◽  
Author(s):  
Lorena R. Lizarraga-Valderrama ◽  
Rinat Nigmatullin ◽  
Caroline Taylor ◽  
John W. Haycock ◽  
Frederik Claeyssens ◽  
...  

2018 ◽  
Vol 301 (10) ◽  
pp. 1657-1667 ◽  
Author(s):  
Papon Muangsanit ◽  
Rebecca J. Shipley ◽  
James B. Phillips

2011 ◽  
Vol 175-176 ◽  
pp. 220-223 ◽  
Author(s):  
Ai Jun Hu ◽  
Bao Qi Zuo ◽  
Feng Zhang ◽  
Qing Lan ◽  
Huan Xiang Zhang

Schwann cells (SCs) are primary structural and functional cells in peripheral nervous system and play a crucial role in peripheral nerve regeneration. Current challenge in peripheral nerve tissue engineering is to produce an implantable scaffold capable of bridging long nerve gaps and assist Scs in directing the growth of regenerating axons in nerve injury recovery. Electrospun silk fibroin nanofibers, fabricated for the cell culture in vitro, can provide such experiment support. Silk fibroin scaffolds (SFS) were fabricated with formic acid (FA), and the average fiber diameter was 305 ± 24 nm. The data from microscopic, immunohistochemical and scanning electron micrograph confirmed that the scaffold was beneficial to the adherence, proliferation and migration of SCs without exerting any significant cytotoxic effects on their phenotype. Thus, providing an experimental foundation accelerated the formation of bands of Bünger to enhance nerve regeneration. 305 nm SFS could be a candidate material for nerve tissue engineering.


2005 ◽  
Vol 288-289 ◽  
pp. 27-30 ◽  
Author(s):  
Q. Ao ◽  
A.J. Wang ◽  
W.L. Cao ◽  
C. Zhao ◽  
Ya Dong Gong ◽  
...  

A new method to fabricate porous chitosan nerve conduits with multi-channels was described. A uniquely designed mold was composed of 7-50 stainless steel needles and a set of plastic pedestals. Porous or imperforate chitosan tubes with 2-5mm inner diameter and 0.2-1.0 mm wall thickness were made firstly. The chitosan tubes were injected with 3% chitosan gel. The stainless steel needles longitudinally perforated through the chitosan tubes filled with chitosan gel, and the plastic pedestals were used to fix the needles. Lyophilization was used to finish fabrication. The diameter of channels was 0.2-0.4mm. Swelling property and biodegradability of Multi-channeled chitosan conduits were investigated. Wright’s staining and scanning electron microscope (SEM) were used to observe spread and proliferation of Neuroblastoma cells (N2A, mouse) on the conduits. It is promising that the porous chitosan nerve conduits with multi-channels are used as nerve tissue engineering scaffolds in repair of peripheral nerve and spinal cord injuries.


2016 ◽  
Vol 12 (1) ◽  
pp. 015008 ◽  
Author(s):  
Ena Bolaina-Lorenzo ◽  
Cristina Martínez-Ramos ◽  
Manuel Monleón-Pradas ◽  
Wilberth Herrera-Kao ◽  
Juan V Cauich-Rodríguez ◽  
...  

Author(s):  
Somayeh Tofighi Nasab ◽  
Nasim Hayati Roodbari ◽  
Vahabodin Goodarzi ◽  
Hossein Ali Khonakdar ◽  
Kourosh Mansoori ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document