Global sensitivity analysis based on random variables with interval parameters by metamodel-based optimisation

Author(s):  
Sinan Xiao ◽  
Zhenzhou Lu ◽  
Liyang Xu
2019 ◽  
Vol 65 ◽  
pp. 266-293 ◽  
Author(s):  
Nazih Benoumechiara ◽  
Kevin Elie-Dit-Cosaque

In global sensitivity analysis, the well-known Sobol’ sensitivity indices aim to quantify how the variance in the output of a mathematical model can be apportioned to the different variances of its input random variables. These indices are based on the functional variance decomposition and their interpretation becomes difficult in the presence of statistical dependence between the inputs. However, as there are dependencies in many application studies, this drawback enhances the development of interpretable sensitivity indices. Recently, the Shapley values that were developed in the field of cooperative games theory have been connected to global sensitivity analysis and present good properties in the presence of dependencies. Nevertheless, the available estimation methods do not always provide confidence intervals and require a large number of model evaluations. In this paper, a bootstrap resampling is implemented in existing algorithms to assess confidence intervals. We also propose to consider a metamodel in substitution of a costly numerical model. The estimation error from the Monte-Carlo sampling is combined with the metamodel error in order to have confidence intervals on the Shapley effects. Furthermore, we compare the Shapley effects with existing extensions of the Sobol’ indices in different examples of dependent random variables.


Author(s):  
Zdeněk Kala

The probability of failure of a load bearing steel member is investigated using a new type of global sensitivity analysis subordinated to contrasts. The main objective of the probability-oriented sensitivity analysis is structural reliability. The structural reliability methodology uses random variables as inputs. The subject of interest is the identification of those random variables that are most important when the limit state of a steel bridge member is reached. The limit state is defined by the occurrence of brittle fracture, which results from stress changes caused by multiple repeated loads. The propagation of a single-edge crack from initial to critical size is analysed using linear fracture mechanics. The failure probability and sensitivity indices are calculated using sampling-based methods. The sensitivity indices are estimated using double-nested-loop simulation of the Latin Hypercube Sampling method. New findings indicate that interaction effects among input variables strongly influence the probability of failure especially at the beginning of the operating period.


Sign in / Sign up

Export Citation Format

Share Document