Multi-objective multi-echelon distribution planning for perishable goods supply chain: a case study

Author(s):  
Samiha Mustabin Jaigirdar ◽  
Sudipta Das ◽  
Autoshe Ray Chowdhury ◽  
Sayem Ahmed ◽  
Ripon Kumar Chakrabortty
Author(s):  
Srikant Gupta ◽  
Ahteshamul Haq ◽  
Irfan Ali ◽  
Biswajit Sarkar

AbstractDetermining the methods for fulfilling the continuously increasing customer expectations and maintaining competitiveness in the market while limiting controllable expenses is challenging. Our study thus identifies inefficiencies in the supply chain network (SCN). The initial goal is to obtain the best allocation order for products from various sources with different destinations in an optimal manner. This study considers two types of decision-makers (DMs) operating at two separate groups of SCN, that is, a bi-level decision-making process. The first-level DM moves first and determines the amounts of the quantity transported to distributors, and the second-level DM then rationally chooses their amounts. First-level decision-makers (FLDMs) aimed at minimizing the total costs of transportation, while second-level decision-makers (SLDM) attempt to simultaneously minimize the total delivery time of the SCN and balance the allocation order between various sources and destinations. This investigation implements fuzzy goal programming (FGP) to solve the multi-objective of SCN in an intuitionistic fuzzy environment. The FGP concept was used to define the fuzzy goals, build linear and nonlinear membership functions, and achieve the compromise solution. A real-life case study was used to illustrate the proposed work. The obtained result shows the optimal quantities transported from the various sources to the various destinations that could enable managers to detect the optimum quantity of the product when hierarchical decision-making involving two levels. A case study then illustrates the application of the proposed work.


2021 ◽  
Vol 27 (1) ◽  
pp. 45-59
Author(s):  
Hong Zhang ◽  
Lu Yu

Delivery of the prefabricated components may be disrupted by low productivity and various of traffic restrictions, thus delaying the prefabricated construction project. However, planning of the prefabricated component supply chain (PCSC) under disruptions has seldom been studied. This paper studies the construction schedule-dependent resilience for the PCSC plan by considering transportation costs and proposes a multi-objective optimization model. First, the PCSC planning problem regarding schedule-dependent resilience and resultant transportation cost is analyzed. Second, a quantification scheme of the schedule-dependent resilience of the PCSC plan is proposed. Third, formulation of the resilience-cost tradeoff optimization model for the PCSC planning is developed. Fourth, the multi-objective particle swarm optimization (MOPSO)-based method for solving the resilience-cost tradeoff model is presented. Finally, a case study is presented to demonstrate and justify the developed method. This study contributes to the knowledge and methodologies for PCSC management by addressing resilience at the planning stage.


Sign in / Sign up

Export Citation Format

Share Document