scholarly journals Facilitating proportional reasoning through worked examples: Two classroom-based experiments

2017 ◽  
Vol 4 (1) ◽  
pp. 1297213 ◽  
Author(s):  
Brendan Bentley ◽  
Gregory C.R. Yates ◽  
John Lee
2009 ◽  
Vol 23 (2) ◽  
pp. 129-138 ◽  
Author(s):  
Florian Schmidt-Weigand ◽  
Martin Hänze ◽  
Rita Wodzinski

How can worked examples be enhanced to promote complex problem solving? N = 92 students of the 8th grade attended in pairs to a physics problem. Problem solving was supported by (a) a worked example given as a whole, (b) a worked example presented incrementally (i.e. only one solution step at a time), or (c) a worked example presented incrementally and accompanied by strategic prompts. In groups (b) and (c) students self-regulated when to attend to the next solution step. In group (c) each solution step was preceded by a prompt that suggested strategic learning behavior (e.g. note taking, sketching, communicating with the learning partner, etc.). Prompts and solution steps were given on separate sheets. The study revealed that incremental presentation lead to a better learning experience (higher feeling of competence, lower cognitive load) compared to a conventional presentation of the worked example. However, only if additional strategic learning behavior was prompted, students remembered the solution more correctly and reproduced more solution steps.


Author(s):  
Matthew J. Genge

Drawings, illustrations, and field sketches play an important role in Earth Science since they are used to record field observations, develop interpretations, and communicate results in reports and scientific publications. Drawing geology in the field furthermore facilitates observation and maximizes the value of fieldwork. Every geologist, whether a student, academic, professional, or amateur enthusiast, will benefit from the ability to draw geological features accurately. This book describes how and what to draw in geology. Essential drawing techniques, together with practical advice in creating high quality diagrams, are described the opening chapters. How to draw different types of geology, including faults, folds, metamorphic rocks, sedimentary rocks, igneous rocks, and fossils, are the subjects of separate chapters, and include descriptions of what are the important features to draw and describe. Different types of sketch, such as drawings of three-dimensional outcrops, landscapes, thin-sections, and hand-specimens of rocks, crystals, and minerals, are discussed. The methods used to create technical diagrams such as geological maps and cross-sections are also covered. Finally, modern techniques in the acquisition and recording of field data, including photogrammetry and aerial surveys, and digital methods of illustration, are the subject of the final chapter of the book. Throughout, worked examples of field sketches and illustrations are provided as well as descriptions of the common mistakes to be avoided.


2021 ◽  
Vol 55 ◽  
pp. 193-200
Author(s):  
Elien Vanluydt ◽  
Anne-Sophie Supply ◽  
Lieven Verschaffel ◽  
Wim Van Dooren

Sign in / Sign up

Export Citation Format

Share Document