Eigenvector dimension-reduction method for reliability analysis of power systems under the time-dependent load uncertainty

Author(s):  
Zhetao Chen ◽  
Zhimin Xi
Author(s):  
Yongsu Jung ◽  
Hyunkyoo Cho ◽  
Ikjin Lee

The conventional most probable point (MPP)-based dimension reduction method (DRM) and following researches show high accuracy in reliability analysis and thus have been successfully applied to reliability-based design optimization (RBDO). However, improvement in accuracy usually leads to reduction in efficiency. The MPP-based DRM is certainly better from the perspective of accuracy than first-order reliability methods (FORM). However, it requires additional function evaluations which could require heavy computational cost such as finite element analysis (FEA) to improve accuracy of probability of failure estimation. Therefore, in this paper, we propose MPP-based approximated DRM (ADRM) that performs one more approximation at MPP to maintain accuracy of DRM with efficiency of FORM. In the proposed method, performance functions will be approximated in original X-space with simplified bivariate DRM and linear regression using available function information such as gradients obtained during the previous MPP searches. Therefore, evaluation of quadrature points can be replaced by the proposed approximation. In this manner, we eliminate function evaluations at quadrature points for reliability analysis, so that the proposed method requires function evaluations for MPP search only, which is identical with FORM. In RBDO where sequential reliability analyses in different design points are necessary, ADRM becomes more powerful due to accumulated function information, which will lead to more accurate approximation. To further improve efficiency of the proposed method, several techniques, such as local window and adaptive initial point, are proposed as well. Numerical study verifies that the proposed method is as accurate as DRM and as efficient as FORM by utilizing available function information obtained during MPP searches.


Author(s):  
Ikjin Lee ◽  
Kyung K. Choi ◽  
Liu Du ◽  
David Gorsich

There are two commonly used reliability analysis methods of analytical methods: linear approximation - First Order Reliability Method (FORM), and quadratic approximation - Second Order Reliability Method (SORM), of the performance functions. The reliability analysis using FORM could be acceptable for mildly nonlinear performance functions, whereas the reliability analysis using SORM is usually necessary for highly nonlinear performance functions of multi-variables. Even though the reliability analysis using SORM may be accurate, it is not desirable to use SORM for probability of failure calculation since SORM requires the second-order sensitivities. Moreover, the SORM-based inverse reliability analysis is very difficult to develop. This paper proposes a method that can be used for multi-dimensional highly nonlinear systems to yield very accurate probability of failure calculation without requiring the second order sensitivities. For this purpose, the univariate dimension reduction method (DRM) is used. A three-step computational process is proposed to carry out the inverse reliability analysis: constraint shift, reliability index (β) update, and the most probable point (MPP) approximation method. Using the three steps, a new DRM-based MPP is obtained, which computes the probability of failure of the performance function more accurately than FORM and more efficiently than SORM.


2010 ◽  
Vol 132 (5) ◽  
Author(s):  
Jooho Choi ◽  
Dawn An ◽  
Junho Won

An efficient method for a structural reliability analysis is proposed under the Bayesian framework, which can deal with the epistemic uncertainty arising from a limited amount of data. Until recently, conventional reliability analyses dealt mostly with the aleatory uncertainty, which is related to the inherent physical randomness and its statistical properties are completely known. In reality, however, epistemic uncertainties are prevalent, which makes the existing methods less useful. In the Bayesian approach, the probability itself is treated as a random variable of a beta distribution conditional on the provided data, which is determined by conducting a double loop of reliability analyses. The Kriging dimension reduction method is employed to promote efficient implementation of the reliability analysis, which can construct the PDF of the limit state function with favorable accuracy using a small number of analyses. Mathematical examples are used to demonstrate the proposed method. An engineering design problem is also addressed, which is to find an optimum design of a pigtail spring in a vehicle suspension, taking material uncertainty due to limited test data into account.


Sign in / Sign up

Export Citation Format

Share Document