Preparation and characterization of cellulose/in situ generated silver nanoparticle composite films prepared using Pongamia pinnata leaf extract as a reducing and stabilizing agent

Author(s):  
M. Kishanji ◽  
G. Mamatha ◽  
D. Madhuri ◽  
D. Suresh Kumar ◽  
G. Vijaya Charan ◽  
...  
2020 ◽  
Vol 1002 ◽  
pp. 114-122
Author(s):  
Dalal K. Thbayh ◽  
Rawnaq A. Talib ◽  
Dalal N. Ahilfi ◽  
Tahseen A. Alaridhee ◽  
Kareema M. Ziadan

In this study, we report on a successful preparation nanocomposites poly (o-toluidine) (POT) doping with dodecylbenzene sulfonate acid (DBSA)/ ZnO by in-situ polymerization of (o-toluidine) monomer using ZnO nanoparticles (the weight ratios OT/ZnO: 1/5%, 1/10%, 1/15%). The composite films have been prepared by using the casting method on different substrate depending on the type of measurement. The surface morphology properties of the prepared samples were studied by the field emission scanning electron microscopy (FESEM). The results of FESEM indicate that ZnO nanoparticles were successfully embedded in the POT via chemical interactions between ZnO and (O-toluidine) monomer and the EDX spectrum showed the presence of element Zn in POT-DBSA/ZnO composites. The crystal structure was measured by x-ray directional and its pattern revealed the presence of ZnO in dopant polymer, in the diffraction patterns of POT-DBSA. The intensity of the peaks was increased as the amount of ZnO nanoparticles increased in POT-DBSA. The typical rectifying behaviour indicated that the formation of a diode observes by the I–V characterization of POT-DBSA/ZnO composites at thin film layer with top Al thin layer contact.


2013 ◽  
Vol 395-396 ◽  
pp. 121-124
Author(s):  
Jia Qi Lin ◽  
Pan Pan Zhang ◽  
Wen Long Yang

A functional potassium sodium niobate/polyimide (KNN/PI) composite films were prepared in this paper. KNN fillers are well dispersed in the PI matrix without any accumulation through in situ polymerization process. The optical band baps of the hybrid films become smaller with the increase of KNN loading. The optical band baps of the films with 0-20 wt% KNN filler are estimated to be 2.61 eV, 2.57 eV, 2.52 eV, 4.29 eV, 2.35 eV respectively.


Cellulose ◽  
2015 ◽  
Vol 22 (2) ◽  
pp. 1243-1251 ◽  
Author(s):  
Cheng-Yu Yan ◽  
Peng-Gang Ren ◽  
Zeng-Ping Zhang ◽  
Hao Wang ◽  
Zhong-Ming Li

Sign in / Sign up

Export Citation Format

Share Document