Stabilizing Agent
Recently Published Documents


TOTAL DOCUMENTS

524
(FIVE YEARS 245)

H-INDEX

48
(FIVE YEARS 19)

Author(s):  
Quan-fang Lu ◽  
Juan-long Li ◽  
Jie Yu ◽  
Li-juan Cui ◽  
Bo Wang ◽  
...  

Abstract Tantalum pentoxide nanoparticles (Ta2O5 NPs) were fabricated by cathode glow discharge electrolysis (CGDE) generated between a needle-like platinum wire cathode and a tantalum foil anode in 6 g L−1 Na2SO4 electrolyte solution containing 5 mL hydrofluoric acid (HF) and 0.075 g cetyltrimethyl ammonium bromide (CTAB). The chemical structure, composition and morphology of the obtained powder were analyzed by using XRD, FT-IR, SEM/EDS, XPS and UV-vis DRS. The results found that Ta2O5 NPs with orthorhombic structure and wide band gap (3.6 eV) are successfully fabricated at 500 V discharge voltage in about 3 h. CTAB as a stabilizing agent can reduce the agglomeration due to forming CTA+ and attaching the surface of the synthetic products. A possible preparation mechanism of Ta2O5 NPs is proposed. Firstly, the tantalum foil anode is oxidized to form a compact Ta2O5 layer. Then, Ta2O5 surface is etched to form soluble [TaF7]2− complexes in the presence of HF. After that, soluble [TaF7]2− complexes can react with H2O to form Ta(OH)5. Finally, Ta(OH)5 is further converted to Ta2O5 from plasma-liquid interface into solution.


2021 ◽  
Vol 13 (23) ◽  
pp. 13220
Author(s):  
Faisal Ali ◽  
Zahid Ali ◽  
Umer Younas ◽  
Awais Ahmad ◽  
Ghulam Mooin-ud-din ◽  
...  

Herrin, a simple and eco-friendly method for the synthesis of silver nanowires (Ag-NWs) has been reported. Silver nanowires were synthesized using Psidium guajava seed extract that acted as a reducing agent as well as a stabilizing agent for silver nitrate solution. Synthesis was carried out at 50 °C temperature under continuous UV-irradiation. Silver nanowires were initially characterized by a UV-visible and FTIR spectrophotometer. In addition, morphology and particle size of synthesized Ag-NWs were determined using Field Emission Scanning Electron Microscopy and X-ray diffraction (XRD) techniques. Nanowires were found to have 12.8 μm length and 200–500 nm diameter and cubic phase morphology. Furthermore, the catalytic potential of Ag-NWs for the degradation of methyl orange dye (MO) was determined. The selected dye was degraded successfully that confirmed the catalytic potential of Ag-NWs. The authors concluded that Ag-NWs can be synthesized using plant extract having excellent morphological features as well as impressive catalytic potential.


2021 ◽  
Author(s):  
◽  
Sophie Geyrhofer

<p>(-)-Zampanolide (1), a natural product isolated from a marine sponge, is a microtubule-stabilizing agent that exhibits activity in the nanomolar range against various cancer cells, including in P-gp pump overexpressing cells. This attribute makes (-)-zampanolide an interesting target for further investigation. In this work, a new method for a modular and convergent total synthesis of optically pure zampanolide was investigated, which would also allow the generation of “zampanalogs” following the same basic strategy. Their biological activity may then be assessed to allow the elucidation of structure-activity relationships of (-)-zampanolide and its analogs in tubulin binding.  The synthetic plan consisted of the modular combination of four major fragments, which would be connected in the late stages of the synthesis and could therefore be easily exchanged to allow the generation of analogs. The C15-C16 bond would be connected via an alkynylation reaction, and a subsequent reductive methylation would install the trisubstituted alkene. The connections at C1 and C3 could be achieved through a Bestmann ylid linchpin reaction, while the macrolactonization would be completed using a ring-closing metathesis to form the C8-C9 alkene. The side chain could be attached at C20 using one of the established aza-aldol methods.  The fragments necessary for the formation of the macrocycle were synthesized successfully. The purification strategy throughout the synthetic route was rationalized and provides an improvement with respect to yield and time compared to work previously done in this research group. Alongside these fragments, modified fragments that were originally intended to serve as model systems were synthesized, which could also be used as building blocks in the synthesis of “zampanalogs”.  Several methods for a stereoselective alkynylation at C15 were tested. These led to only meager successes, so an approach using a non-stereoselective alkynylation, followed by oxidation and a stereoselective CBS-reduction, was chosen. For the installation of the trisubstituted alkene a reductive methylation with vitride was tested, but this only led to the reduction of the alkyne without methylation. This product may be employed for the synthesis of C17-desmethyl analogs. The reductive methylation at C16-C17 was ultimately achieved using the Gilman reagent in a similar manner to the installation of the C5 methyl group in the C3-C8 fragment.  A linchpin strategy with the Bestmann ylid simultaneously formed the connectivity at C1 and C3. This process was successfully performed on multiple substrates arising from the model systems used in the alkynylation and reductive methylation reactions, yielding precursors to the ring-closing metathesis and potentially enabling the synthesis of various analogs.  The ring-closing metathesis proved to be difficult in analogs lacking the C17 methyl group and cis-tetrahydropyran ring, and due to this tendency further investigations are necessary. Once the macrocycle has been closed, a global deprotection and oxidation of hydroxy groups is necessary to allow for the installation of the sidechain.</p>


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4059
Author(s):  
Mohammed K. H. Radwan ◽  
Foo Wei Lee ◽  
Yoke Bee Woon ◽  
Ming Kun Yew ◽  
Kim Hung Mo ◽  
...  

The use of cement as a soil stabilization agent is one of the common solutions to enhancing the engineering properties of soil. However, the impact and cost of using cement have raised environmental concerns, generating much interest in the search for alternative materials to reduce the use of cement as a stabilizing agent in soil treatment. This study looked into limiting cement content in peat soil stabilization by using fly ash waste and polypropylene fiber (PPF). It focused on soil mechanical mediation for stabilization of peat with fly ash cement and PPF cement by comparing the mechanical properties, using unconfined compressive strength (UCS) and California bearing ratio (CBR) tests. The control (untreated) peat specimen and specimens with either fly ash (10%, 20% and 30%) and PPF (0.1%, 0.15% and 0.2%) were studied. Test results showed that 30% of fly ash and cement content displays the highest UCS and CBR values and gives the most reliable compressibility properties. On the other hand, UCS and CBR test results indicate optimum values of PPF–cement stabilizing agent content in the specimen of 0.15% PPF and 30% cement. Selected specimens were analyzed using scanning electron microscopy (SEM), and PPF threads were found to be well surrounded by cement-stabilized peat matrices. It was also observed that the specimen with 30% fly ash generated more hydration products when compared to the specimen with 100% cement content. It is concluded that the use of fly ash cement and PPF cement as stabilizing agents to limit the cement usage in peat soil treatment is potentially viable.


2021 ◽  
Author(s):  
◽  
Sophie Geyrhofer

<p>(-)-Zampanolide (1), a natural product isolated from a marine sponge, is a microtubule-stabilizing agent that exhibits activity in the nanomolar range against various cancer cells, including in P-gp pump overexpressing cells. This attribute makes (-)-zampanolide an interesting target for further investigation. In this work, a new method for a modular and convergent total synthesis of optically pure zampanolide was investigated, which would also allow the generation of “zampanalogs” following the same basic strategy. Their biological activity may then be assessed to allow the elucidation of structure-activity relationships of (-)-zampanolide and its analogs in tubulin binding.  The synthetic plan consisted of the modular combination of four major fragments, which would be connected in the late stages of the synthesis and could therefore be easily exchanged to allow the generation of analogs. The C15-C16 bond would be connected via an alkynylation reaction, and a subsequent reductive methylation would install the trisubstituted alkene. The connections at C1 and C3 could be achieved through a Bestmann ylid linchpin reaction, while the macrolactonization would be completed using a ring-closing metathesis to form the C8-C9 alkene. The side chain could be attached at C20 using one of the established aza-aldol methods.  The fragments necessary for the formation of the macrocycle were synthesized successfully. The purification strategy throughout the synthetic route was rationalized and provides an improvement with respect to yield and time compared to work previously done in this research group. Alongside these fragments, modified fragments that were originally intended to serve as model systems were synthesized, which could also be used as building blocks in the synthesis of “zampanalogs”.  Several methods for a stereoselective alkynylation at C15 were tested. These led to only meager successes, so an approach using a non-stereoselective alkynylation, followed by oxidation and a stereoselective CBS-reduction, was chosen. For the installation of the trisubstituted alkene a reductive methylation with vitride was tested, but this only led to the reduction of the alkyne without methylation. This product may be employed for the synthesis of C17-desmethyl analogs. The reductive methylation at C16-C17 was ultimately achieved using the Gilman reagent in a similar manner to the installation of the C5 methyl group in the C3-C8 fragment.  A linchpin strategy with the Bestmann ylid simultaneously formed the connectivity at C1 and C3. This process was successfully performed on multiple substrates arising from the model systems used in the alkynylation and reductive methylation reactions, yielding precursors to the ring-closing metathesis and potentially enabling the synthesis of various analogs.  The ring-closing metathesis proved to be difficult in analogs lacking the C17 methyl group and cis-tetrahydropyran ring, and due to this tendency further investigations are necessary. Once the macrocycle has been closed, a global deprotection and oxidation of hydroxy groups is necessary to allow for the installation of the sidechain.</p>


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7017
Author(s):  
Thanon Bualuang ◽  
Peerapong Jitsangiam ◽  
Teewara Suwan ◽  
Ubolluk Rattanasak ◽  
Weerachart Tangchirapat ◽  
...  

Supplementary cementitious materials have been widely used to reduce the greenhouse gas emissions caused by ordinary Portland cement (OPC), including in the construction of road bases. In addition, the use of OPC in road base stabilization is inefficient due to its moisture sensitivity and lack of flexibility. Therefore, this study investigates the effect of hybrid alkali-activated materials (H-AAM) on flexibility and water prevention when used as binders while proposing a new and sustainable material. A cationic asphalt emulsion (CAE) was applied to increase this cementless material’s resistance to moisture damage and flexibility. The physical properties and structural formation of this H-AAM, consisting of fly ash, hydrated lime, and sodium hydroxide, were examined. The results revealed that the addition of CAE decreased the material’s mechanical strength due to its hindrance of pozzolanic reactions and alkali activations. This study revealed decreases in the cementitious product’s peak in the x-ray diffraction analysis (XRD) tests and the number of tetrahedrons detected in the Fourier transform infrared spectroscopy analysis (FTIR) tests. The scanning electron microscope (SEM) images showed some signs of asphalt films surrounding hybrid alkali-activated particles and even some unreacted FA particles, indicating incomplete chemical reactions in the study material’s matrix. However, the H-AAM was still able to meet the minimum road base strength requirement of 1.72 MPa. Furthermore, the toughness and flexibility of the H-AAM were enhanced by CAE. Notably, adding 10% and 20% CAE by weight to the hybrid alkali-activated binder produced a significant advantage in terms of water absorption, which can be explained by its influence on the material’s consolidation of its matrices, resulting in significant void reductions. Hence, the outcomes of this study might reveal an opportunity for developing a new stabilizing agent for road bases with water-prevention properties and flexibility that remains faithful to the green construction material concept.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
R. Durga Prasad Reddy ◽  
Haytham Elgazzar ◽  
Varun Sharma

Purpose The purpose of this paper is to print a thermolabile drug-containing tablet using the fused deposition modeling (FDM) technique and analyze its mechanical, pharmaceutical and environmental feasibility using a variety of tests. Design/methodology/approach Ascorbic acid (Vitamin C) is the thermally-sensitive drug impregnated into polyvinyl alcohol excipient using ethanol-water mixture and printed by an FDM printer by varying three parameters without using any external stabilizing agent. Afterward, Taguchi analysis has been performed on these parameters to recognize the significant factors and interactions. Besides this, a regression model has been obtained based on the dissolution data. Various thermo-mechanical and pharmaceutical tests have been carried out to confirm the feasibility. Finally, a life cycle assessment (LCA) analysis has been carried out to compare it with the existing tableting method by considering the environmental impacts. Findings The dissolution profile was found to follow the Korsmeyer-Peppas model, where the drug release occurred both by dissolution and erosion. Further, the infill percent has been found as the most significant parameter. The characterization tests and imaging outputs proved the fidelity of this attempt. Finally, the three-dimensional printed method was found to be more environmentally sustainable than the existing conventional tableting process. Originality/value LCA on a printed tablet is a one-of-a-kind attempt. Thus, this research attempt delivered another approach to print personalized tablets at a temperature lower than prescribed temperatures with required release behavior and can contribute toward the quest of sustainable personalized medication.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
K. M. Faridul Hasan ◽  
Péter György Horváth ◽  
Zsófia Kóczán ◽  
Miklós Bak ◽  
Tibor Alpár

AbstractThis study reports on a novel coloration approach for sisal/cotton interwoven fabric via in situ synthesis of European larch (Larix decidua) heartwood-anchored sustainable nanosilver. The heartwood extracts functioned as the reducing and stabilizing agent in reaction systems. The deposited silver nanoparticles (AgNPs) over the fabric surfaces displayed brilliant coloration effects with improved fastness ratings and color strengths (K/S). The successful depositions of nanosilvers were quantified and increasing trends in K/S values with the increase in silver precursor loading were discovered. The concentrations of AgNPs deposited on fabric surfaces were found to be 16 mg/L, 323 mg/L, and 697 mg/L, which were measured through an iCP OES (atomic absorption spectroscopy) test. The K/S values obtained for different loadings of silver precursors (0.5, 1.5, and 2.5 mM (w/v)) are 2.74, 6.76, and 8.96. Morphological studies of the control and AgNP-treated fabrics also displayed a uniform and homogeneous distribution of AgNPs over the fabric surfaces. FTIR (Fourier transform infrared spectroscopy) studies of the sustainably developed materials further confirms the successful bonding between the fabrics and AgNPs. Furthermore, stability against temperature was also noticed as per TGA (thermogravimetric analysis) and DTG (derivative TG) analysis although there was a slight decline from the control sisal/cotton interwoven fabrics observed. Statistically, regression analysis and ANOVA tests were conducted to understand the significance of increased nanosilver loading on sisal/cotton interwoven fabrics. In summary, the perceived results demonstrated successful coloration and functionalization of sisal/cotton interwoven fabrics through green AgNPs, which could indicate a new milestone for industrial production units.


2021 ◽  
Vol 22 (22) ◽  
pp. 12155
Author(s):  
Mariapompea Cutroneo ◽  
Vladimir Havranek ◽  
Anna Mackova ◽  
Petr Malinsky ◽  
Letteria Silipigni ◽  
...  

Typically, polymeric composites containing nanoparticles are realized by incorporating pre-made nanoparticles into a polymer matrix by using blending solvent or by the reduction of metal salt dispersed in the polymeric matrix. Generally, the production of pre-made Au NPs occurs in liquids with two-step processes: producing the gold nanoparticles first and then adding them to the liquid polymer. A reproducible method to synthetize Au nanoparticles (NPs) into polydimethylsiloxane (PDMS) without any external reducing or stabilizing agent is a challenge. In this paper, a single-step method is proposed to synthetize nanoparticles (NPs) and at the same time to realize reproducible porous and bulk composites using laser ablation in liquid. With this single-step process, the gold nanoparticles are therefore produced directly in the liquid polymer. The optical properties of the suspensions of AuNPs in distilled water and in the curing agent have been analyzed by the UV-VIS spectroscopy, employed in the transmission mode, and compared with those of the pure curing agent. The electrical dc conductivity of the porous PDMS/Au NPs nanocomposites has been evaluated by the I–V characteristics. Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis have monitored the composition and morphology of the so-obtained composites and the size of the fabricated Au nanoparticles. Atomic force microscopy (AFM) has been used to determine the roughness of the bulk PDMS and its Au NP composites.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2370
Author(s):  
Mousa A. Alghuthaymi ◽  
Chandrasekaran Rajkuberan ◽  
Thiyagaraj Santhiya ◽  
Ondrej Krejcar ◽  
Kamil Kuča ◽  
...  

The developments of green-based metallic nanoparticles (gold) are gaining tremendous interest, having potential applications in health care and diagnosis. Therefore, in the present study, Polianthes tuberosa flower filtered extract was used as a reducing and stabilizing agent to synthesize gold nanoparticles (PtubAuNPs). The PtubAuNPs were extensively characterized by UV–visible spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, and X-ray diffraction. The antibacterial activity of PtubAuNPs was determined by the agar well diffusion method; the PtubAuNPs performed extreme antagonistic activity against the tested pathogens. Furthermore, the cytotoxicity of the PtubAuNPs was evaluated in MCF 7 cells by MTT assay. The PtubAuNPs induced toxicity in MCF 7 cells with the least concentration of 100 µg/mL in a dose-dependent method by inducing apoptosis. Overall, the study manifested that PtubAuNPs are a potent nanomaterial that can be employed as an antimicrobial and anticancer agent.


Sign in / Sign up

Export Citation Format

Share Document