good biocompatibility
Recently Published Documents


TOTAL DOCUMENTS

711
(FIVE YEARS 387)

H-INDEX

35
(FIVE YEARS 10)

2022 ◽  
Vol 12 ◽  
Author(s):  
Yushuai Liu ◽  
Yuanyuan Geng ◽  
Beilei Yue ◽  
Pui-Chi Lo ◽  
Jing Huang ◽  
...  

Cancer immunotherapy can boost the immune response of patients to eliminate tumor cells and suppress tumor metastasis and recurrence. However, immunotherapy resistance and the occurrence of severe immune-related adverse effects are clinical challenges that remain to be addressed. The tumor microenvironment plays a crucial role in the therapeutic efficacy of cancer immunotherapy. Injectable hydrogels have emerged as powerful drug delivery platforms offering good biocompatibility and biodegradability, minimal invasion, convenient synthesis, versatility, high drug-loading capacity, controlled drug release, and low toxicity. In this review, we summarize the application of injectable hydrogels as a unique platform for targeting the immunosuppressive tumor microenvironment.


Author(s):  
Chunyang Pan ◽  
Changfeng Xu ◽  
Jun Zhou

Abstract Due to the good biocompatibility, 316L stainless steel is widely used in the manufacture of medical instru-ments and human implants. The super hydrophilic 316L steel surface is used for reducing friction and adhe-sion. By choosing appropriate laser process parameters 316L steel surfaces with super-hydrophilic were ob-tained. The effects of laser process parameters including repeat frequency, pulse width, scanning speed, and the number of scanning were investigated to find the relationship between surface microstructure and wet-ting ability. To investigate the super-hydrophilic maintenance time on the textured surface, the textured sur-faces were preserved in ambident air, distilled water, and absolute ethanol. The results showed that by choosing appropriate laser process parameters surface with super-hydrophilicity can be maintained for 30 days.


mSystems ◽  
2022 ◽  
Author(s):  
Hengyi Li ◽  
Changsheng Zhang ◽  
Xi Chen ◽  
Hantian You ◽  
Luhua Lai

Cadmium pollution is one of the major environmental problems due to excessive release and accumulation. New technologies that can auto-detect cadmium ions with good biocompatibility are in urgent need.


Nanomedicine ◽  
2022 ◽  
Author(s):  
Hossein Danafar ◽  
Marziyeh Salehiabar ◽  
Murat Barsbay ◽  
Hossein Rahimi ◽  
Mohammadreza Ghaffarlou ◽  
...  

Aim: To prepare a novel hybrid system for the controlled release and delivery of curcumin (CUR). Methods: A method for the ultrasound-assisted fabrication of protein-modified nanosized graphene oxide-like carbon-based nanoparticles (CBNPs) was developed. After being modified with bovine serum albumin (BSA), CUR was loaded onto the synthesized hybrid (labeled CBNPs@BSA–CUR). The structure and properties of the synthesized nanoparticles were elucidated using transmission electron microscopy (TEM), atomic force microscopy (AFM), ultraviolet-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR) and x-ray photoelectron spectroscopy (XPS) methods. Results: CBNPs@BSA–CUR showed pH sensitivity and were calculated as controlled CUR release behavior. The drug-free system exhibited good biocompatibility and was nontoxic. However, CBNPs@BSA–CUR showed acceptable antiproliferative ability against MCF-7 breast cancer cells. Conclusion: CBNPs@BSA–CUR could be considered a highly promising nontoxic nanocarrier for the delivery of CUR with good biosafety.


2022 ◽  
Author(s):  
Meng He ◽  
Jing Yao ◽  
Zijun Zhang ◽  
Ying Zhang ◽  
Rui Chen ◽  
...  

Abstract Obesity induced by antipsychotics have plagued more than 20 million people worldwide. However, no drug is available to eliminate the obesity induced by antipsychotics. Here we examined the effect and potential mechanisms of a gold nanoclusters (AuNCs) modified by N-isobutyryl-L-cysteine on the obesity induced by olanzapine, the most prescribed but obesogenic antipsychotics, in a rat model. Our results showed that AuNCs completely prevented and reversed the obesity induced by olanzapine and improved glucose metabolism profile in rats. Further mechanism investigations revealed that AuNCs exert its anti-obesity function through inhibition of olanzapine-induced dysfunction of histamine H1 receptor and proopiomelanocortin signaling therefore reducing hyperphagia, and reversing olanzapine-induced inhibition of uncoupling-protein-1 signaling which increases thermogenesis. Together with AuNCs’ good biocompatibility, these findings not only provide AuNCs as a promising nanodrug candidate for treating obesity induced by antipsychotics, but also open an avenue for the potential application of AuNCs-based nanodrugs in treating general obesity


2022 ◽  
Vol 23 (1) ◽  
pp. 558
Author(s):  
Chih-Hsiang Fang ◽  
Chung-Kai Sun ◽  
Yi-Wen Lin ◽  
Min-Chih Hung ◽  
Hung-Ying Lin ◽  
...  

In this study, we fabricated gelatin/nano-hydroxyapatite/metformin scaffold (GHMS) and compared its effectiveness in bone regeneration with extraction-only, Sinbone, and Bio-Oss Collagen® groups in a critical size rat alveolar bone defect model. GHMS was synthesized by co-precipitating calcium hydroxide and orthophosphoric acid within gelatin solution, incorporating metformin, and cross-linked by microbial transglutaminase. The morphology, characterization, and biocompatibility of scaffold were examined. The in vitro effects of GHMS on osteogenic gene and protein expressions were evaluated. In vivo bone formation was assessed in a critical size rat alveolar bone defect model with micro-computed tomography and histological examination by comparing GHMS with extraction-only, Sinbone, and Bio-Oss Collagen®. The synthesized GHMS had a highly interconnected porous structure with a mean pore size of 81.85 ± 13.8 µm. GHMS exhibited good biocompatibility; promoted ALPL, RUNX2, SP7, BGLAP, SPARC and Col1a1 gene expressions; and upregulated the synthesis of osteogenic proteins, including osteonectin, osteocalcin, and collagen type I. In critical size rat alveolar bone defects, GHMS showed superior bone regeneration compared to extraction-only, Sinbone, and Bio-Oss Collagen® groups as manifested by greater alveolar ridge preservation, while more bone formation with a lower percentage of connective tissue and residual scaffold at the defect sites grafted with GHMS in histological staining. The GHMS presented in this study may be used as a potential bone substitute to regenerate alveolar bone. The good biocompatibility, relatively fast degradation, interconnected pores allowing vascularization, and higher bioactivity properties of the components of the GHMS (gelatin, nHA, and metformin) may contribute to direct osteogenesis.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Yangyang Liu ◽  
Shurui Song ◽  
Shuangyong Liu ◽  
Xiaoyan Zhu ◽  
Peige Wang

Traditional dressings used for wound repair, such as gauze, have shortcomings; for example, they cannot provide a suitable microenvironment for wound recovery. Therefore, it is necessary to find a better dressing to overcome shortcomings. Hydrogel provides a suitable wet environment, has good biocompatibility, and has a strong swelling rate to absorb exudate. Nanomaterial in hydrogels has been used to improve their performance and overcome the shortcomings of current hydrogel dressings. Hydrogel dressing can also be loaded with nanodrug particles to exert a better therapeutic effect than conventional drugs and to make the dressing more practical. This article reviews the application of nanotechnology in hydrogels related to wound healing and discusses the application prospects of nanohydrogels. After searching for hydrogel articles related to wound healing, we found that nanomaterial can not only enhance the mechanical strength, antibacterial properties, and adhesion of hydrogels but also achieve sustained drug release. From the perspective of clinical application, these characteristics are significant for wound healing. The combination of nanomaterial and hydrogel is an ideal dressing with broad application prospects for wound healing in the future.


Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 110
Author(s):  
Avelino Corma ◽  
Pablo Botella ◽  
Eva Rivero-Buceta

The administration of cytotoxic drugs in classical chemotherapy is frequently limited by water solubility, low plasmatic stability, and a myriad of secondary effects associated with their diffusion to healthy tissue. In this sense, novel pharmaceutical forms able to deliver selectively these drugs to the malign cells, and imposing a space-time precise control of their discharge, are needed. In the last two decades, silica nanoparticles have been proposed as safe vehicles for antitumor molecules due to their stability in physiological medium, high surface area and easy functionalization, and good biocompatibility. In this review, we focus on silica-based nanomedicines provided with specific mechanisms for intracellular drug release. According to silica nature (amorphous, mesostructured, and hybrids) nanocarriers responding to a variety of stimuli endogenously (e.g., pH, redox potential, and enzyme activity) or exogenously (e.g., magnetic field, light, temperature, and ultrasound) are proposed. Furthermore, the incorporation of targeting molecules (e.g., monoclonal antibodies) that interact with specific cell membrane receptors allows a selective delivery to cancer cells to be carried out. Eventually, we present some remarks on the most important formulations in the pipeline for clinical approval, and we discuss the most difficult tasks to tackle in the near future, in order to extend the use of these nanomedicines to real patients.


Nanoscale ◽  
2022 ◽  
Author(s):  
Shengran Li ◽  
Xintao Xie ◽  
Wenliang Wang ◽  
Sangni Jiang ◽  
Weikang Mei ◽  
...  

Liposomes are used to deliver therapeutics in vivo because of their good biocompatibility, efficient delivery, and ability to protect the therapeutics from degradation. However, the instability of liposomes will cause...


Sign in / Sign up

Export Citation Format

Share Document