Design of optimal sequential hybrid testing plans

2020 ◽  
pp. 1-12
Author(s):  
Yao Cheng ◽  
Elsayed A. Elsayed
Keyword(s):  
Author(s):  
L. D. Hashan Peiris ◽  
Andrew R. Plummer ◽  
Jonathan L. Du Bois
Keyword(s):  

2020 ◽  
Vol 44 (6) ◽  
pp. 821-835
Author(s):  
V. Ruffini ◽  
C. Szczyglowski ◽  
D. A. W. Barton ◽  
M. Lowenberg ◽  
S. A. Neild

Author(s):  
Maria Rosaria Marsico ◽  
David J. Wagg ◽  
Simon A. Neild

Normally, for feasibility reasons, tests must be conducted on scaled structures, although scaling can introduce other issues. An alternative solution is to experimentally test the part of the structure that is of particular interest, at full or closer to full scale, while numerically modeling the remainder of the structure. This method is termed real-time dynamic substructuring or hybrid testing. To complete the substructure interaction the forces required to impose the displacements on the physical model are measured and applied to the model in real-time. One of the key challenges is to compensate for the dynamics associated with the actuators that are imposing the displacements on the physical test-piece. Ideally these actuators would act instantaneously however even with sophisticated control techniques interface errors are inevitable. We used an example system to study the effects of interface error modeled as a delay, on the accuracy of the overall substructuring technique.


2019 ◽  
Vol 25 (21-22) ◽  
pp. 2695-2705 ◽  
Author(s):  
Anuja Roy ◽  
Zili Zhang ◽  
Aparna (Dey) Ghosh ◽  
Biswajit Basu

This paper explores the potential of a tuned sloshing damper (TSD) in the control of small amplitude vibrations, which is often important from serviceability considerations, through the use of a relatively small mass ratio of the damper liquid. To investigate the nonlinear behavior of the TSD, real-time hybrid testing is conducted in which a single rectangular tank containing water constitutes the prototype TSD. The structure is modeled as a multi-degree-of-freedom system. Two different base input motions, namely harmonic and synthetically generated broad-banded input, are considered. The sensitivity of the TSD performance to tuning ratio vis-à-vis low mass ratio is studied. The experimental results are compared with those obtained from a numerical study carried out using the shallow water wave theory-based nonlinear, semi-empirical model, for the simulation of the sloshing motion of the TSD liquid (water). Results indicate that in the tuned condition, even with a low mass ratio, the TSD is highly effective in the suppression of the small amplitude vibrations, which is underestimated by the simulation model.


Sign in / Sign up

Export Citation Format

Share Document