scholarly journals Monoids of Intervals of Simple Refinement Monoids and Non-stable K-Theory of Multiplier Algebras

2003 ◽  
Vol 31 (10) ◽  
pp. 5011-5037 ◽  
Author(s):  
F. Ortus ◽  
E. Pardo
Author(s):  
M. Rørdam ◽  
F. Larsen ◽  
N. Laustsen
Keyword(s):  

1973 ◽  
Vol 6 (1) ◽  
pp. 85-94 ◽  
Author(s):  
Pramod K. Sharma ◽  
Jan R. Strooker
Keyword(s):  

2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Hans Jockers ◽  
Peter Mayr ◽  
Urmi Ninad ◽  
Alexander Tabler

Abstract We study the algebra of Wilson line operators in three-dimensional $$ \mathcal{N} $$ N = 2 supersymmetric U(M ) gauge theories with a Higgs phase related to a complex Grassmannian Gr(M, N ), and its connection to K-theoretic Gromov-Witten invariants for Gr(M, N ). For different Chern-Simons levels, the Wilson loop algebra realizes either the quantum cohomology of Gr(M, N ), isomorphic to the Verlinde algebra for U(M ), or the quantum K-theoretic ring of Schubert structure sheaves studied by mathematicians, or closely related algebras.


Author(s):  
Andrei Neguţ

Abstract We construct explicit elements $W_{ij}^k$ in (a completion of) the shifted quantum toroidal algebra of type $A$ and show that these elements act by 0 on the $K$-theory of moduli spaces of parabolic sheaves. We expect that the quotient of the shifted quantum toroidal algebra by the ideal generated by the elements $W_{ij}^k$ will be related to $q$-deformed $W$-algebras of type $A$ for arbitrary nilpotent, which would imply a $q$-deformed version of the Alday-Gaiotto-Tachikawa (AGT) correspondence between gauge theory with surface operators and conformal field theory.


2021 ◽  
Vol 496 (2) ◽  
pp. 124822
Author(s):  
Quinn Patterson ◽  
Adam Sierakowski ◽  
Aidan Sims ◽  
Jonathan Taylor
Keyword(s):  

2007 ◽  
Vol 59 (3) ◽  
pp. 596-613 ◽  
Author(s):  
Benjamín A. Itzá-Ortiz

AbstractLet (Y, T) be a minimal suspension flow built over a dynamical system (X, S) and with (strictly positive, continuous) ceiling function f : X → ℝ. We show that the eigenvalues of (Y, T) are contained in the range of a trace on the K0-group of (X, S). Moreover, a trace gives an order isomorphism of a subgroup of K0(C(X) ⋊Sℤ) with the group of eigenvalues of (Y, T). Using this result, we relate the values of t for which the time-t map on the minimal suspension flow is minimal with the K-theory of the base of this suspension.


2020 ◽  
Vol 26 (2) ◽  
Author(s):  
Anders S. Buch ◽  
Sjuvon Chung ◽  
Changzheng Li ◽  
Leonardo C. Mihalcea

Sign in / Sign up

Export Citation Format

Share Document