Carbon Sink Capacity: Soil Profile Characteristics

Author(s):  
Z. Harichane ◽  
H. Afra ◽  
R. Bahar

In this paper, a new approach for soil profile characterization is validated. The soil characteristics are calculated by fitting the theoretical amplification functions to those obtained experimentally. The identified characteristics have been observed to agree well with those obtained by in situ and laboratory tests. This new approach uses system identification theory and free field records. It is based on formulation of theoretical soil amplification function for two sites in terms of the different parameters of the soil profile layers (thickness, damping ratio, shear wave velocity and unit weight). The theoretical function is smoothed according to the experimental data (spectral ratios) by means of the least squares minimization technique. The function parameters are determined by solving, numerically, a non linear optimization problem. In this approach, soil profile characteristics of two sites can be identified simultaneously, from only a single soil acceleration record at free surface of each site without need of bedrock or outcropping acceleration records. Strong ground motions data recorded during the Boumerdes earthquake (Algeria) of May 21, 2003, are used for the validation.


1978 ◽  
Vol 42 (1) ◽  
pp. 61-66 ◽  
Author(s):  
J. W. Gilliam ◽  
S. Dasberg ◽  
L. J. Lund ◽  
D. D. Focht

2021 ◽  
Author(s):  
Loukas C. Katsenis ◽  
Constantine A. Stamatopoulos ◽  
Vassilis P. Panoskaltsis

Biologia ◽  
2009 ◽  
Vol 64 (3) ◽  
Author(s):  
Marina Pintar ◽  
Bostjan Mali ◽  
Hojka Kraigher

AbstractThe study was performed on the ski resort Krvavec, which is one of the most frequented ski resorts in Slovenia. The ski slopes serve as pastures for cattle during summer time and range from 1500 to 2000 m a.s.l., which is at or above the upper timberline. To offer a longer ski season and to profit snow better (either natural or artificial one) the slopes have been levelled and consequently the soil profile has been changed. Such altered soil profile characteristics strongly impact hydrological functions of soils.To study these impacts, five plots (20 × 20 m) have been chosen on the slopes with a different history: pasture without any amelioration work, a patch of forest in the ski resort without any ameliorations, and three plots with different intensity of amelioration.Dynamics of soil water content on each plot has been determined by measuring soil water content in-situ with portable TDR system during several days after long lasting heavy rains. Statistically significant differences were shown in soil water content between the plots after the rain, although some differences between plots have disappeared in the following days.


2021 ◽  
Author(s):  
Welivitiyage Don Dimuth Prasad Welivitiya ◽  
Garry Willgoose ◽  
Gregory Hancock

<p>Evaluating the future stability and land denudation rates of natural or anthropogenic landforms is paramount for sustainable land use practices. Landform evolution models can be powerful tools in this endeavour.  In this study we used the well-established landform evolution model SIBERIA and the newly developed coupled soilscape-landform evolution model SSSPAM to simulate the evolution of a proposed post mining landform. SIBERIA uses a cellular digital elevation model to simulate annual average fluvial and diffusive erosion on landforms using annual average precipitation. However it does not simulate the soil profile evolution on the evolving landform. The new SSSPAM coupled soilscape-landform evolution model has the ability to assess the overall erosion rates of catchment scale landforms either using short term precipitation events, variable precipitation or time averaged precipitation rates. In addition, SSSPAM is able to simulate the evolution of the soil profile of the evolving landform using pedogenetic processes such as physical weathering and armouring.</p><p>            To assess the reliability of SSSPAM, model predictions at 100 and 10000 years were compared with SIBERIA predictions at the same times. During the long term (10000yr) simulation the effect of armouring and weathering on the landform evolution was also assessed. The results obtained from these different simulations were compared and contrasted. Comparison of the short term simulations revealed that SSSPAM results compare well with the simulation results of the more established SIBERIA model. Long term simulation showed that SSSPAM simulation results also compares well with SIBERIA simulations while the erosion rates predicted by both models are close to the land denudation rates measured in the field. The soil profile characteristics and channel forms simulated by SSSPAM long term simulations were examined using several landform cross-sections. This analyses revealed that SSSPAM produces deep incised channels with very low soil thickness in upper reaches of the catchment and shallow channels with relatively thick soil layers in the lower reaches of the catchment. These SSSPAM simulated channels match well with the channel forms and distribution of bedrock channels and alluvial channels observed in the field. The analysis of the catchment cross-sections also showed that SSSPAM is capable of reproducing complex subsurface soil evolution and stratification and spatial variability of soil profile characteristics typically observed in the field.</p>


Sign in / Sign up

Export Citation Format

Share Document