scholarly journals Localization of ribosomal protein S1 in the granular component of the interphase nucleolus and its distribution during mitosis.

1985 ◽  
Vol 100 (3) ◽  
pp. 873-886 ◽  
Author(s):  
B Hügle ◽  
R Hazan ◽  
U Scheer ◽  
W W Franke

Using antibodies to various nucleolar and ribosomal proteins, we define, by immunolocalization in situ, the distribution of nucleolar proteins in the different morphological nucleolar subcompartments. In the present study we describe the nucleolar localization of a specific ribosomal protein (S1) by immunofluorescence and immunoelectron microscopy using a monoclonal antibody (RS1-105). In immunoblotting experiments, this antibody reacts specifically with the largest and most acidic protein of the small ribosomal subunit (S1) and shows wide interspecies cross-reactivity from amphibia to man. Beside its localization in cytoplasmic ribosomes, this protein is found to be specifically localized in the granular component of the nucleolus and in distinct granular aggregates scattered over the nucleoplasm. This indicates that ribosomal protein S1, in contrast to reports on other ribosomal proteins, is not bound to nascent pre-rRNA transcripts but attaches to preribosomes at later stages of rRNA processing and maturation. This protein is not detected in the residual nucleolar structures of cells inactive in rRNA synthesis such as amphibian and avian erythrocytes. During mitosis, the nucleolar material containing ribosomal protein S1 undergoes a remarkable transition and shows a distribution distinct from that of several other nucleolar proteins. In prophase, the nucleolus disintegrates and protein S1 appears in numerous small granules scattered throughout the prophase nucleus. During metaphase and anaphase, a considerable amount of this protein is found in association with the surfaces of all chromosomes and finely dispersed in the cell plasm. In telophase, protein S1-containing material reaccumulates in granular particles in the nucleoplasm of the newly formed nuclei and, finally, in the re-forming nucleoli. These observations indicate that the nucleolus-derived particles containing ribosomal protein S1 are different from cytoplasmic ribosomes and, in the living cell, are selectively recollected after mitosis into the newly formed nuclei and translocated into a specific nucleolar subcompartment, i.e., the granular component. The nucleolar location of ribosomal protein S1 and its rearrangement during mitosis is discussed in relation to the distribution of other nucleolar proteins.

1972 ◽  
Vol 130 (1) ◽  
pp. 103-110 ◽  
Author(s):  
L. P. Visentin ◽  
C. Chow ◽  
A. T. Matheson ◽  
M. Yaguchi ◽  
F. Rollin

1. The 30S ribosomal subunit of the extreme halophile Halobacterium cutirubrum is unstable and loses 75% of its ribosomal protein when the 70S ribosome is dissociated into the two subunits. A stable 30S subunit is obtained if the dissociation of the 70S particle is carried out in the presence of the soluble fraction. 2. A fractionation procedure was developed for the selective removal of groups of proteins from the 30S and 50S subunits. When the ribosomes, which are stable in 4m-K+ and 0.1m-Mg2+, were extracted with low-ionic-strength buffer 75–80% of the 30S proteins and 60–65% of the 50S proteins as well as the 5S rRNA were released. The proteins in this fraction are the most acidic of the H. cutirubrum ribosomal proteins. Further extraction with Li+–EDTA releases additional protein, leaving a core particle containing either 16S rRNA or 23S rRNA and about 5% of the total ribosomal protein. The amino acid composition, mobility on polyacrylamide gels at pH4.5 and 8.7, and the molecular-weight distribution of the various protein fractions were determined. 3. The s values of the rRNA are 5S, 16S and 23S. The C+G contents of the 16S and 23S rRNA were 56.1 and 58.8% respectively and these are higher than C+G contents of the corresponding Escherichia coli rRNA (53.8 and 54.1%).


1983 ◽  
Vol 3 (2) ◽  
pp. 190-197
Author(s):  
J J Madjar ◽  
M Frahm ◽  
S McGill ◽  
D J Roufa

Four two-dimensional polyacrylamide gel electrophoresis systems were used to identify 78 Chinese hamster cell ribosomal proteins by the uniform nomenclature based on rat liver ribosomal proteins. The 40S ribosomal subunit protein affected by Chinese hamster ovary (CHO) cell one-step emetine resistance mutations is designated S14 in the standard nomenclature. To seek unambiguous genetic evidence for a cause and effect relationship between CHO cell emetine resistance and mutations in the S14 gene, we mutagenized a one-step CHO cell mutant and isolated second-step mutant clones resistant to 10-fold-higher concentrations of emetine. All of the highly resistant, two-step CHO cell mutants obtained displayed additional alterations in ribosomal protein S14. Hybridization complementation tests revealed that the two-step CHO cell emetine resistance mutants were members of the same complementation group defined by one-step CHO cell mutants, EmtB. Two-step mutants obtained from a Chinese hamster lung cell emetine-resistant clone belong to the EmtA complementation group. The two-step and EmtB mutants elaborated 40S ribosomal subunits, which dissociated to 32S and 40S core particles in buffers containing 0.5 M KCl at 4 degrees C. In contrast, 40S ribosomal subunits purified from all EmtA, one-step EmtB EmtC mutants, and wild-type CHO and lung cells were stable at this temperature in buffers containing substantially higher concentrations of salt. Thus, two-step emtB mutations affect the structure of S14 protein directly and the stability of the 40S ribosomal subunit indirectly.


1989 ◽  
Vol 9 (12) ◽  
pp. 5281-5288
Author(s):  
W M Wormington

Ribosomal protein L5 binds specifically to 5S rRNA to form a complex that is a precursor to 60S subunit assembly in vivo. Analyses in yeast cells, mammalian cells, and Xenopus embryos have shown that the accumulation of L5 is not coordinated with the expression of other ribosomal proteins. In this study, the primary structure and developmental expression of Xenopus ribosomal protein L5 were examined to determine the basis for its distinct regulation. These analyses showed that L5 expression could either coincide with 5S rRNA synthesis and ribosome assembly or be controlled independently of these events at different stages of Xenopus development. L5 synthesis during oogenesis was uncoupled from the accumulation of 5S rRNa but coincided with subunit assembly. In early embryos, the inefficient translation of L5 mRNA resulted in the accumulation of a stable L5-5S rRNA complex before ribosome assembly at later stages of development. Additional results demonstrated that L5 protein synthesized in vitro bound specifically to 5S rRNA.


1999 ◽  
Vol 10 (1) ◽  
pp. 77-90 ◽  
Author(s):  
Serafı́n Piñol-Roma

rRNA precursors are bound throughout their length by specific proteins, as the pre-rRNAs emerge from the transcription machinery. The association of pre-rRNA with proteins as ribonucleoprotein (RNP) complexes persists during maturation of 18S, 5.8S, and 28S rRNA, and through assembly of ribosomal subunits in the nucleolus. Preribosomal RNP complexes contain, in addition to ribosomal proteins, an unknown number of nonribosomal nucleolar proteins, as well as small nucleolar RNA-ribonucleoproteins (sno-RNPs). This report describes the use of a specific, rapid, and mild immunopurification approach to isolate and analyze human RNP complexes that contain nonribosomal nucleolar proteins, as well as ribosomal proteins and rRNA. Complexes immunopurified with antibodies to nucleolin—a major nucleolar RNA-binding protein—contain several distinct specific polypeptides that include, in addition to nucleolin, the previously identified nucleolar proteins B23 and fibrillarin, proteins with electrophoretic mobilities characteristic of ribosomal proteins including ribosomal protein S6, and a number of additional unidentified proteins. The physical association of these proteins with one another is mediated largely by RNA, in that the complexes dissociate upon digestion with RNase. Complexes isolated from M-phase cells are similar in protein composition to those isolated from interphase cell nuclear extracts. Therefore, the predominant proteins that associate with nucleolin in interphase remain in RNP complexes during mitosis, despite the cessation of rRNA synthesis and processing in M-phase. In addition, precursor rRNA, as well as processed 18S and 28S rRNA and candidate rRNA processing intermediates, is found associated with the immunopurified complexes. The characteristics of the rRNP complexes described here, therefore, indicate that they represent bona fide precursors of mature cytoplasmic ribosomal subunits.


1989 ◽  
Vol 9 (12) ◽  
pp. 5281-5288 ◽  
Author(s):  
W M Wormington

Ribosomal protein L5 binds specifically to 5S rRNA to form a complex that is a precursor to 60S subunit assembly in vivo. Analyses in yeast cells, mammalian cells, and Xenopus embryos have shown that the accumulation of L5 is not coordinated with the expression of other ribosomal proteins. In this study, the primary structure and developmental expression of Xenopus ribosomal protein L5 were examined to determine the basis for its distinct regulation. These analyses showed that L5 expression could either coincide with 5S rRNA synthesis and ribosome assembly or be controlled independently of these events at different stages of Xenopus development. L5 synthesis during oogenesis was uncoupled from the accumulation of 5S rRNa but coincided with subunit assembly. In early embryos, the inefficient translation of L5 mRNA resulted in the accumulation of a stable L5-5S rRNA complex before ribosome assembly at later stages of development. Additional results demonstrated that L5 protein synthesized in vitro bound specifically to 5S rRNA.


FEBS Letters ◽  
2006 ◽  
Vol 580 (30) ◽  
pp. 6797-6799 ◽  
Author(s):  
Sultan Ch. Agalarov ◽  
Artem A. Kalinichenko ◽  
Aigar A. Kommer ◽  
Alexander S. Spirin

1990 ◽  
Vol 10 (9) ◽  
pp. 4590-4595 ◽  
Author(s):  
T W McMullin ◽  
P Haffter ◽  
T D Fox

Mitochondrial translation of the mRNA encoding cytochrome c oxidase subunit III (coxIII) specifically requires the action of three position activator proteins encoded in the nucleus of Saccharomyces cerevisiae. Some mutations affecting one of these activators, PET122, can be suppressed by mutations in an unlinked nuclear gene termed PET123. PET123 function was previously demonstrated to be required for translation of all mitochondrial gene products. We have now generated an antibody against the PET123 protein and have used it to demonstrate that PET123 is a mitochondrial ribosomal protein of the small subunit. PET123 appears to be present at levels comparable to those of other mitochondrial ribosomal proteins, and its accumulation is dependent on the presence of the 15S rRNA gene in mitochondria. Taken together with the previous genetic data, these results strongly support a model in which the mRNA-specific translational activator PET122 works by directly interacting with the small ribosomal subunit to promote translation initiation on the coxIII mRNA.


2000 ◽  
Vol 11 (11) ◽  
pp. 3777-3789 ◽  
Author(s):  
Tracy Stage-Zimmermann ◽  
Ute Schmidt ◽  
Pamela A. Silver

In Saccharomyces cerevisiae, the 60S ribosomal subunit assembles in the nucleolus and then is exported to the cytoplasm, where it joins the 40S subunit for translation. Export of the 60S subunit from the nucleus is known to be an energy-dependent and factor-mediated process, but very little is known about the specifics of its transport. To begin to address this problem, an assay was developed to follow the localization of the 60S ribosomal subunit inS. cerevisiae. Ribosomal protein L11b (Rpl11b), one of the ∼45 ribosomal proteins of the 60S subunit, was tagged at its carboxyl terminus with the green fluorescent protein (GFP) to enable visualization of the 60S subunit in living cells. A panel of mutant yeast strains was screened for their accumulation of Rpl11b–GFP in the nucleus as an indicator of their involvement in ribosome synthesis and/or transport. This panel included conditional alleles of several rRNA-processing factors, nucleoporins, general transport factors, and karyopherins. As predicted, conditional alleles of rRNA-processing factors that affect 60S ribosomal subunit assembly accumulated Rpl11b–GFP in the nucleus. In addition, several of the nucleoporin mutants as well as a few of the karyopherin and transport factor mutants also mislocalized Rpl11b–GFP. In particular, deletion of the previously uncharacterized karyopherin KAP120 caused accumulation of Rpl11b–GFP in the nucleus, whereas ribosomal protein import was not impaired. Together, these data further define the requirements for ribosomal subunit export and suggest a biological function for KAP120.


2009 ◽  
Vol 8 (11) ◽  
pp. 1792-1802 ◽  
Author(s):  
Lixia Jia ◽  
Jasvinder Kaur ◽  
Rosemary A. Stuart

ABSTRACT The Oxa1 protein plays a central role in facilitating the cotranslational insertion of the nascent polypeptide chains into the mitochondrial inner membrane. Mitochondrially encoded proteins are synthesized on matrix-localized ribosomes which are tethered to the inner membrane and in physical association with the Oxa1 protein. In the present study we used a chemical cross-linking approach to map the Saccharomyces cerevisiae Oxa1-ribosome interface, and we demonstrate here a close association of Oxa1 and the large ribosomal subunit protein, MrpL40. Evidence to indicate that a close physical and functional relationship exists between MrpL40 and another large ribosomal protein, the Mrp20/L23 protein, is also provided. MrpL40 shares sequence features with the bacterial ribosomal protein L24, which like Mrp20/L23 is known to be located adjacent to the ribosomal polypeptide exit site. We propose therefore that MrpL40 represents the Saccharomyces cerevisiae L24 homolog. MrpL40, like many mitochondrial ribosomal proteins, contains a C-terminal extension region that bears no similarity to the bacterial counterpart. We show that this C-terminal mitochondria-specific region is important for MrpL40's ability to support the synthesis of the correct complement of mitochondrially encoded proteins and their subsequent assembly into oxidative phosphorylation complexes.


1987 ◽  
Vol 7 (8) ◽  
pp. 2691-2699 ◽  
Author(s):  
O Meyuhas ◽  
E A Thompson ◽  
R P Perry

When P1798 murine lymphosarcoma cells are exposed to 10(-7) M dexamethasone, there is a dramatic inhibition of rRNA synthesis, which is completely reversible when the hormone is withdrawn. In the present experiments we examined whether dexamethasone treatment causes any alteration in the accumulation or utilization of mRNAs that encode ribosomal proteins (rp mRNAs). No effect on the accumulation of six different rp mRNAs was detected. However, the translation of five of six rp mRNAs was selectively inhibited in the presence of the hormone, as judged by a substantial decrease in ribosomal loading. Normal translation of rp mRNA was resumed within a few hours after hormone withdrawal. In untreated or fully recovered cells, the distribution of rp mRNAs between polyribosomes and free ribonucleoprotein is distinctly bimodal, suggesting that rp mRNAs are subject to a particular form of translational control in which they are either translationally inactive or fully loaded with ribosomes. A possible relationship between this mode of translational control and the selective suppression of rp mRNA translation by glucocorticoids is discussed.


Sign in / Sign up

Export Citation Format

Share Document