nucleolar material
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 0)

H-INDEX

19
(FIVE YEARS 0)

2020 ◽  
Vol 155 ◽  
pp. 17-24
Author(s):  
Michal Benc ◽  
Stanislava Martinkova ◽  
Jana Rychtarova ◽  
Josef Fulka ◽  
Alexandra Bartkova ◽  
...  


2019 ◽  
Vol 116 (35) ◽  
pp. 17330-17335 ◽  
Author(s):  
Lian Zhu ◽  
Tiffany M. Richardson ◽  
Ludivine Wacheul ◽  
Ming-Tzo Wei ◽  
Marina Feric ◽  
...  

The nucleolus is a prominent nuclear condensate that plays a central role in ribosome biogenesis by facilitating the transcription and processing of nascent ribosomal RNA (rRNA). A number of studies have highlighted the active viscoelastic nature of the nucleolus, whose material properties and phase behavior are a consequence of underlying molecular interactions. However, the ways in which the material properties of the nucleolus impact its function in rRNA biogenesis are not understood. Here we utilize the Cry2olig optogenetic system to modulate the viscoelastic properties of the nucleolus. We show that above a threshold concentration of Cry2olig protein, the nucleolus can be gelled into a tightly linked, low mobility meshwork. Gelled nucleoli no longer coalesce and relax into spheres but nonetheless permit continued internal molecular mobility of small proteins. These changes in nucleolar material properties manifest in specific alterations in rRNA processing steps, including a buildup of larger rRNA precursors and a depletion of smaller rRNA precursors. We propose that the flux of processed rRNA may be actively tuned by the cell through modulating nucleolar material properties, which suggests the potential of materials-based approaches for therapeutic intervention in ribosomopathies.



eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Grant A King ◽  
Jay S Goodman ◽  
Jennifer G Schick ◽  
Keerthana Chetlapalli ◽  
Danielle M Jorgens ◽  
...  

Production of healthy gametes in meiosis relies on the quality control and proper distribution of both nuclear and cytoplasmic contents. Meiotic differentiation naturally eliminates age-induced cellular damage by an unknown mechanism. Using time-lapse fluorescence microscopy in budding yeast, we found that nuclear senescence factors – including protein aggregates, extrachromosomal ribosomal DNA circles, and abnormal nucleolar material – are sequestered away from chromosomes during meiosis II and subsequently eliminated. A similar sequestration and elimination process occurs for the core subunits of the nuclear pore complex in both young and aged cells. Nuclear envelope remodeling drives the formation of a membranous compartment containing the sequestered material. Importantly, de novo generation of plasma membrane is required for the sequestration event, preventing the inheritance of long-lived nucleoporins and senescence factors into the newly formed gametes. Our study uncovers a new mechanism of nuclear quality control and provides insight into its function in meiotic cellular rejuvenation.



2019 ◽  
Author(s):  
Grant A. King ◽  
Jay S. Goodman ◽  
Keerthana Chetlapalli ◽  
Jennifer G. Schick ◽  
Danielle M. Jorgens ◽  
...  

ABSTRACTProduction of healthy gametes in meiosis relies on the quality control and proper distribution of both nuclear and cytoplasmic contents. Meiotic differentiation naturally eliminates age-induced cellular damage by an unknown mechanism. Using time-lapse fluorescence microscopy in budding yeast, we found that nuclear senescence factors – including protein aggregates, extrachromosomal ribosomal DNA circles, and abnormal nucleolar material – are sequestered away from chromosomes during meiosis II and subsequently eliminated. A similar sequestration and elimination process occurs for the core subunits of the nuclear pore complex in both young and old cells. Nuclear envelope remodeling drives the formation of a membranous compartment containing the sequestered material. Importantly,de novogeneration of plasma membrane is required for the sequestration event, preventing the inheritance of long-lived nucleoporins and senescence factors into the newly formed gametes. Our study uncovers a new mechanism of nuclear quality control and provides insight into its function in meiotic cellular rejuvenation.



2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Tomás Nepomuceno-Mejía ◽  
Luis Enrique Florencio-Martínez ◽  
Santiago Martínez-Calvillo

Nucleogenesis is the cellular event responsible for the formation of the new nucleoli at the end of mitosis. This process depends on the synthesis and processing of ribosomal RNA (rRNA) and, in some eukaryotes, the transfer of nucleolar material contained in prenucleolar bodies (PNBs) to active transcription sites. The lack of a comprehensive description of the nucleolus throughout the cell cycle of the human pathogen Leishmania major prompted us to analyze the distribution of nucleolar protein 56 (Nop56) during interphase and mitosis in the promastigote stage of the parasite. By in silico analysis we show that the orthologue of Nop56 in L. major (LmNop56) contains the three characteristic Nop56 domains and that its predicted three-dimensional structure is also conserved. Fluorescence microscopy observations indicate that the nucleolar localization of LmNop56 is similar, but not identical, to that of the nucleolar protein Elp3b. Notably, unlike other nucleolar proteins, LmNop56 remains associated with the nucleolus in nonproliferative cells. Moreover, epifluorescent images indicate the preservation of the nucleolar structure throughout the closed nuclear division. Experiments performed with the related parasite Trypanosoma brucei show that nucleolar division is carried out by an analogous mechanism.



2016 ◽  
Vol 22 (3) ◽  
pp. 621-629 ◽  
Author(s):  
Tomás Nepomuceno-Mejía ◽  
Reyna Lara-Martínez ◽  
Roberto Hernández ◽  
María de Lourdes Segura-Valdez ◽  
Luis F. Jiménez-García

AbstractNucleolar assembly is a cellular event that requires the synthesis and processing of ribosomal RNA, in addition to the participation of pre-nucleolar bodies (PNBs) at the end of mitosis. In mammals and plants, nucleolar biogenesis has been described in detail, but in unicellular eukaryotes it is a poorly understood process. In this study, we used light and electron microscopy cytochemical techniques to investigate the distribution of nucleolar components in the pathway of nucleolus rebuilding during closed cell division in epimastigotes of Trypanosoma cruzi, the etiologic agent of American trypanosomiasis. Silver impregnation specific for nucleolar organizer regions and an ethylenediaminetetraacetic acid regressive procedure to preferentially stain ribonucleoprotein revealed the conservation and dispersion of nucleolar material throughout the nucleoplasm during cell division. Furthermore, at the end of mitosis, the argyrophilic proteins were concentrated in the nucleolar organizer region. Unexpectedly, accumulation of nucleolar material in the form of PNBs was not visualized. We suggest that formation of the nucleolus in epimastigotes of T. cruzi occurs by a process that does not require the concentration of nucleolar material within intermediate nuclear bodies such as mammalian and plant PNBs.



2015 ◽  
Vol 67 (2) ◽  
pp. 405-410
Author(s):  
Jianyue Wang ◽  
Feixiong Zhang

This paper presents details of the process of nucleolar disassembly, studied by conventional transmission electron microscopy (TEM) in wheat root cells. In early prophase, chromatin condensation and irregular nucleolar morphology are observed, with many small particles appearing around the nucleolus. In middle prophase, the nucleolus radiates outwards; in late prophase, the fine structure of the nucleolus disappears and nucleolar material diffuses away. Using ?en bloc? silver-staining to distinguish between nucleoli and chromatin, we observed that the dispersed nucleolar material aggregates around the chromatin, forming a sheath-like perichromosomal structure that coats the chromosomes in late prophase.





2008 ◽  
Vol 31 (3) ◽  
pp. 686-691 ◽  
Author(s):  
Hederson Vinicius de Souza ◽  
Márcia Maria Urbanin Castanhole ◽  
Hermione Elly Melara de Campos Bicudo ◽  
Luiz Antônio Alves Costa ◽  
Mary Massumi Itoyama


Genome ◽  
1999 ◽  
Vol 42 (3) ◽  
pp. 381-386 ◽  
Author(s):  
Mauro Mandrioli ◽  
Davide Bizzaro ◽  
Monica Giusti ◽  
Gian Carlo Manicardi ◽  
Umberto Bianchi

Silver staining of mitotic metaphases of the aphid A. pisum reveals the presence of argentophilic bridges connecting the two X chromosomes. The presence of nucleolar material connecting sex chromosomes seems to be quite a common phenomenon in organisms belonging to very different phyla, and suggests a role of nucleolar proteins in chromosome association and disjunction. In somatic cells of A. pisum, bridges connecting X chromosomes are detectable not only after silver staining but also after CMA3 staining. This finding suggests that GC rich DNA is involved in this type of association. Molecular analysis of rDNA intergenic spacers shows several 247 bp repeats containing short sequences having a high level of homology with the chi sequence of Escherichia coli and with the consensus core region of human hypervariable minisatellites. Moreover, each 247 bp repeat presents a perfect copy of a promoter sequence for polymerase I. These aphid repeats show structural homologies with a 240 bp repeat, which is considered to be responsible for sex chromosome pairing in Drosophila, not only in view of their common presence within rDNA spacers but also for their length and structure. The presence of chi sequences in the IGS of A. pisum, by promoting unequal crossing-over between rDNA genes, could thus give rise to the nucleolar organizing region (NOR) heteromorphism described in different aphid species. Although X pairing at NORs is fundamental in aphid male determination, the presence of heteromorphism of rDNA genes does not inhibit male determination in the A. pisum clone utilized for our experiments.Key words: aphid, rDNA, sex chromosome association, hotspot, NOR heteromorphism.



Sign in / Sign up

Export Citation Format

Share Document