scholarly journals Yeast actin-binding proteins: evidence for a role in morphogenesis.

1988 ◽  
Vol 107 (6) ◽  
pp. 2551-2561 ◽  
Author(s):  
D G Drubin ◽  
K G Miller ◽  
D Botstein

Three yeast actin-binding proteins were identified using yeast actin filaments as an affinity matrix. One protein appears to be a yeast myosin heavy chain; it is dissociated from actin filaments by ATP, it is similar in size (200 kD) to other myosins, and antibodies directed against Dictyostelium myosin heavy chain bind to it. Immunofluorescence experiments show that a second actin-binding protein (67 kD) colocalizes in vivo with both cytoplasmic actin cables and cortical actin patches, the only identifiable actin structures in yeast. The cortical actin patches are concentrated at growing surfaces of the yeast cell where they might play a role in membrane and cell wall insertion, and the third actin-binding protein (85 kD) is only detected in association with these structures. This 85-kD protein is therefore a candidate for a determinant of growth sites. The in vivo role of this protein was tested by overproduction; this overproduction causes a reorganization of the actin cytoskeleton which in turn dramatically affects the budding pattern and spatial growth organization of the yeast cell.

Author(s):  
J. Aggeler ◽  
J.E. Heuser ◽  
Z. Werb

Phagocytosis of particles by macrophages may be similar to cell spreading on a substratum, in that a dense network of actin filaments appears beneath the plasma membrane in both cases. When viewed in broken-open or detergent- extracted cells, cytoskeletal filaments are observed to form focal attachments to the plasma membrane and to the cytoplasmic surface of phagosomes. Hartwig et al. have presented a model of phagocytosis in which an actin-binding protein alters the organization of subplasmalemma1 actin filaments in such a way that the plasma membrane is forced up over the particle to form the phagosome. Their evidence indicates that similar actin-binding proteins may function during cell spreading.


2000 ◽  
Vol 345 (2) ◽  
pp. 185-194 ◽  
Author(s):  
David J. STEPHENS ◽  
George BANTING

Neurabin-II (spinophilin) is a ubiquitously expressed F-actin-binding protein containing an N-terminal actin-binding domain, a PDZ (PSD95/discs large/ZO-1) domain and a C-terminal domain predicted to form a coiled-coil structure. We have stably expressed a green fluorescent protein (GFP)-tagged version of neurabin-II in PC12 cells, and characterized the in vivo dynamics of this actin-binding protein using confocal fluorescence microscopy. We show that GFP-neurabin-II localizes to actin filaments, especially at cortical sites and areas underlying sites of active membrane remodelling. GFP-neurabin-II labels only a subset of F-actin within these cells, as indicated by rhodamine-phalloidin staining. Both actin filaments and small, highly motile structures within the cell body are seen. Photobleaching experiments show that GFP-neurabin-II also exhibits highly dynamic behaviour when bound to actin filaments. Latrunculin B treatment results in rapid relocalization of GFP-neurabin-II to the cytosol, whereas cytochalasin D treatment causes the collapse of GFP-neurabin-II fluorescence to intensely fluorescent foci of F-actin within the cell body. This collapse is reversed on cytochalasin D removal, recovery from which is greatly accelerated by stimulation of cells with epidermal growth factor (EGF). Furthermore, we show that this EGF-induced relocalization of GFP-neurabin-II is dependent on the activity of the small GTPase Rac1 but not the activity of ADP-ribosylation factor 6.


1992 ◽  
Vol 67 (02) ◽  
pp. 252-257 ◽  
Author(s):  
Anne M Aakhus ◽  
J Michael Wilkinson ◽  
Nils Olav Solum

SummaryActin-binding protein (ABP) is degraded into fragments of 190 and 90 kDa by calpain. A monoclonal antibody (MAb TI10) against the 90 kDa fragment of ABP coprecipitated with the glycoprotein lb (GP lb) peak observed on crossed immunoelectrophoresis of Triton X-100 extracts of platelets prepared without calpain inhibitors. MAb PM6/317 against the 190 kDa fragment was not coprecipitated with the GP lb peak under such conditions. The 90 kDa fragment was adsorbed on protein A agarose from extracts that had been preincubated with antibodies to GP lb. This supports the idea that the GP Ib-ABP interaction resides in the 90 kDa region of ABP. GP lb was sedimented with the Triton-insoluble actin filaments in trace amounts only, and only after high speed centrifugation (100,000 × g, 3 h). Both the 190 kDa and the 90 kDa fragments of ABP were sedimented with the Triton-insoluble actin filaments.


1980 ◽  
Vol 87 (3) ◽  
pp. 841-848 ◽  
Author(s):  
J H Hartwig ◽  
J Tyler ◽  
T P Stossel

Branching filaments with striking perpendicularity form when actin polymerizes in the presence of macrophage actin-binding protein. Actin-binding protein molecules are visible at the branch points. Compared with actin polymerized in the absence of actin-binding proteins, not only do the filaments branch but the average length of the actin filaments decreases from 3.2 to 0.63 micrometer. Arrowhead complexes formed by addition of heavy meromyosin molecules to the branching actin filaments point toward the branch points. Actin-binding protein also accelerates the onset of actin polymerization. All of these findings show that actin filaments assemble from nucleating sites on actin-binding protein dimers. A branching polymerization of actin filaments from a preexisting lattice of actin filaments joined by actin-binding protein molecules could generate expansion of cortical cytoplasm in amoeboid cells.


2002 ◽  
Vol 159 (6) ◽  
pp. 993-1004 ◽  
Author(s):  
Christine L. Humphries ◽  
Heath I. Balcer ◽  
Jessica L. D'Agostino ◽  
Barbara Winsor ◽  
David G. Drubin ◽  
...  

Mechanisms for activating the actin-related protein 2/3 (Arp2/3) complex have been the focus of many recent studies. Here, we identify a novel mode of Arp2/3 complex regulation mediated by the highly conserved actin binding protein coronin. Yeast coronin (Crn1) physically associates with the Arp2/3 complex and inhibits WA- and Abp1-activated actin nucleation in vitro. The inhibition occurs specifically in the absence of preformed actin filaments, suggesting that Crn1 may restrict Arp2/3 complex activity to the sides of filaments. The inhibitory activity of Crn1 resides in its coiled coil domain. Localization of Crn1 to actin patches in vivo and association of Crn1 with the Arp2/3 complex also require its coiled coil domain. Genetic studies provide in vivo evidence for these interactions and activities. Overexpression of CRN1 causes growth arrest and redistribution of Arp2 and Crn1p into aberrant actin loops. These defects are suppressed by deletion of the Crn1 coiled coil domain and by arc35-26, an allele of the p35 subunit of the Arp2/3 complex. Further in vivo evidence that coronin regulates the Arp2/3 complex comes from the observation that crn1 and arp2 mutants display an allele-specific synthetic interaction. This work identifies a new form of regulation of the Arp2/3 complex and an important cellular function for coronin.


2000 ◽  
Vol 345 (2) ◽  
pp. 185 ◽  
Author(s):  
David J. STEPHENS ◽  
George BANTING

1983 ◽  
Vol 96 (5) ◽  
pp. 1400-1413 ◽  
Author(s):  
R Niederman ◽  
P C Amrein ◽  
J Hartwig

Purified muscle actin and mixtures of actin and actin-binding protein were examined in the transmission electron microscope after fixation, critical point drying, and rotary shadowing. The three-dimensional structure of the protein assemblies was analyzed by a computer-assisted graphic analysis applicable to generalized filament networks. This analysis yielded information concerning the frequency of filament intersections, the filament length between these intersections, the angle at which filaments branch at these intersections, and the concentration of filaments within a defined volume. Purified actin at a concentration of 1 mg/ml assembled into a uniform mass of long filaments which overlap at random angles between 0 degrees and 90 degrees. Actin in the presence of macrophage actin-binding protein assembled into short, straight filaments, organized in a perpendicular branching network. The distance between branch points was inversely related to the molar ratio of actin-binding protein to actin. This distance was what would be predicted if actin filaments grew at right angles off of nucleation sites on the two ends of actin-binding protein dimers, and then annealed. The results suggest that actin in combination with actin-binding protein self-assembles to form a three-dimensional network resembling the peripheral cytoskeleton of motile cells.


1999 ◽  
Vol 144 (5) ◽  
pp. 989-1000 ◽  
Author(s):  
William A. Kronert ◽  
Angel Acebes ◽  
Alberto Ferrús ◽  
Sanford I. Bernstein

We show that specific mutations in the head of the thick filament molecule myosin heavy chain prevent a degenerative muscle syndrome resulting from the hdp2 mutation in the thin filament protein troponin I. One mutation deletes eight residues from the actin binding loop of myosin, while a second affects a residue at the base of this loop. Two other mutations affect amino acids near the site of nucleotide entry and exit in the motor domain. We document the degree of phenotypic rescue each suppressor permits and show that other point mutations in myosin, as well as null mutations, fail to suppress the hdp2 phenotype. We discuss mechanisms by which the hdp2 phenotypes are suppressed and conclude that the specific residues we identified in myosin are important in regulating thick and thin filament interactions. This in vivo approach to dissecting the contractile cycle defines novel molecular processes that may be difficult to uncover by biochemical and structural analysis. Our study illustrates how expression of genetic defects are dependent upon genetic background, and therefore could have implications for understanding gene interactions in human disease.


2020 ◽  
Vol 31 (24) ◽  
pp. 2718-2732
Author(s):  
Stephanie L. Pollitt ◽  
Kenneth R. Myers ◽  
Jin Yoo ◽  
James Q. Zheng

This study reports that the actin-binding protein, LIM and SH3 Protein 1 (LASP1), regulates actin-based protrusions underlying axon elongation and branching in hippocampal neurons in culture. LASP1 also plays an important role in axon development in vivo, as loss of the Drosophila homologue LASP disrupts the commissural axon development.


Sign in / Sign up

Export Citation Format

Share Document