scholarly journals Bovine chromaffin granule membranes undergo Ca(2+)-regulated exocytosis in frog oocytes.

1992 ◽  
Vol 116 (2) ◽  
pp. 359-365 ◽  
Author(s):  
D Scheuner ◽  
C D Logsdon ◽  
R W Holz

We have devised a new method that permits the investigation of exogenous secretory vesicle function using frog oocytes and bovine chromaffin granules, the secretory vesicles from adrenal chromaffin cells. Highly purified chromaffin granule membranes were injected into Xenopus laevis oocytes. Exocytosis was detected by the appearance of dopamine-beta-hydroxylase of the chromaffin granule membrane in the oocyte plasma membrane. The appearance of dopamine-beta-hydroxylase on the oocyte surface was strongly Ca(2+)-dependent and was stimulated by coinjection of the chromaffin granule membranes with InsP3 or Ca2+/EGTA buffer (18 microM free Ca2+) or by incubation of the injected oocytes in medium containing the Ca2+ ionophore ionomycin. Similar experiments were performed with a subcellular fraction from cultured chromaffin cells enriched with [3H]norepinephrine-containing chromaffin granules. Because the release of [3H]norepinephrine was strongly correlated with the appearance of dopamine-beta-hydroxylase on the oocyte surface, it is likely that intact chromaffin granules and chromaffin granule membranes undergo exocytosis in the oocyte. Thus, the secretory vesicle membrane without normal vesicle contents is competent to undergo the sequence of events leading to exocytosis. Furthermore, the interchangeability of mammalian and amphibian components suggests substantial biochemical conservation of the regulated exocytotic pathway during the evolutionary progression from amphibians to mammals.

1983 ◽  
Vol 97 (6) ◽  
pp. 1906-1917 ◽  
Author(s):  
J H Phillips ◽  
K Burridge ◽  
S P Wilson ◽  
N Kirshner

Cultured bovine adrenal medullary chromaffin cells were stimulated to secrete catecholamines by addition of veratridine or nicotine. The formation of an exocytotic pit exposes a major secretory granule membrane antigen, the enzyme dopamine beta-hydroxylase, to the external medium. By including antiserum to this enzyme in the medium, we were able to visualize sites of exocytosis by decoration of bound antibody using a fluorescent second antibody. Internalization of this antibody-antigen complex was then followed in chase experiments: approximately half the surface complex was internalized in 15-30 min. In other experiments, secretion was triggered in the absence of antiserum, and surface enzyme was revealed by binding antibodies at various times after secretion had been halted by an antagonist. Surface patches of antigen remained discrete from the bulk of the plasma membrane for at least 30 min, although a substantial proportion of the antigen was internalized within this time. Cell surface concanavalin A receptors were internalized at a roughly similar rate, suggesting that mechanisms may be similar. After internalization, chromaffin granule membranes fused to larger structures, possibly lysosomes, and were transported over a few hours to the perinuclear region of the cell.


1993 ◽  
Vol 106 (2) ◽  
pp. 649-655 ◽  
Author(s):  
S.M. Hurtley

Recycling of a secretory granule membrane protein, dopamine-beta-hydroxylase, was examined in primary cultures of bovine adrenal chromaffin cells. Cells were stimulated to secrete in the presence of antibodies directed against the luminal domain of dopamine-beta-hydroxylase. The location of the antibodies after various times of reincubation and after a second secretory stimulus was assessed using immunofluorescence microscopy. Stimulation led to the exposure of dopamine-beta-hydroxylase at the plasma membrane, which could be detected by a polyclonal antibody in living and fixed cells. The plasma membrane dopamine-beta-hydroxylase, either alone or complexed with antibody, was rapidly internalized after removal of the secretagogue. Internalized protein-antibody complex remained stable for at least 24 hours of reculture. Twenty four hours after stimulation the cells with internalized antibody could respond to further stimulation and some of the antibody was re-exposed at the plasma membrane. These findings were confirmed using FACS analysis. This suggests that the antibody-protein complex had returned to secretory granules that could respond to further secretagogue stimulation.


1994 ◽  
Vol 301 (1) ◽  
pp. 305-310 ◽  
Author(s):  
D Roth ◽  
A Morgan ◽  
H Martin ◽  
D Jones ◽  
G J M Martens ◽  
...  

Isoform-specific antisera were used to examine which 14-3-3 isoforms were present in bovine adrenal chromaffin cells. The eta, tau and sigma isoforms were not detectable, and the epsilon isoform was present at only low levels. 14-3-3 isoforms were readily detected with antisera against the beta, gamma and zeta isoforms. The latter isoforms were found to leak from digitonin-permeabilized chromaffin cells, as expected for cytosolic proteins, but a proportion of each isoform was retained. In subcellular fractionation studies isoforms recognized by the beta and zeta antisera were found in the cytosol and Triton-insoluble cytoskeletal fractions, while the gamma isoform was found in cytosol and also in microsomal and chromaffin granule membrane fractions. The gamma 14-3-3 protein associated with granule membranes was partially removed by a high-salt/carbonate wash, and the membranes could bind further gamma from cytosol or from a purified brain 14-3-3 protein mixture. The binding of gamma 14-3-3 was not Ca(2+)-dependent, nor was it affected by phorbol ester, GTP analogues or cyclic AMP. Using pure phospholipid vesicles it was found that gamma and also epsilon 14-3-3 proteins bound directly to phospholipids. Little binding of brain beta, eta or zeta to phospholipid vesicles was detected. Brain 14-3-3 proteins were also able to aggregate phospholipid vesicles. Recombinant 14-3-3 isoforms (tau and the Xenopus protein) were able to stimulate Ca(2+)-dependent exocytosis in digitonin-permeabilized chromaffin cells. The Xenopus proteins lacks part of the extreme N-terminus, indicating that this domain is not essential for function in exocytosis.


Author(s):  
Gemma A.J. Kuijpers ◽  
Harvey B. Pollard

Exocytotic fusion of granules in the adrenal medulla chromaffin cell is triggered by a rise in the concentration of cytosolic Ca2+ upon cell activation. The protein synexin, annexin VII, was originally found in the adrenal medulla and has been shown to cause aggregation and to support fusion of chromaffin granules in a Ca2+-dependent manner. We have previously suggested that synexin may there fore play a role in the exocytotic fusion process. In order to obtain more structural information on synexin, we performed immuno-electron microscopy on frozen ultrathin sections of both isolated chromaffin granules and chromaffin cells.Chromaffin granules were isolated from bovine adrenal medulla, and synexin was isolated from bovine lung. Granules were incubated in the presence or absence of synexin (24 μg per mg granule protein) and Ca2+ (1 mM), which induces maximal granule aggregation, in 0.3M sucrose-40m MMES buffer(pH 6.0). Granules were pelleted, washed twice in buffer without synexin and fixed with 2% glutaraldehyde- 2% para formaldehyde in 0.1 M phosphate buffer (GA/PFA) for 30 min. Chromaffin cells were isolated and cultured for 3-5 days, and washed and incubated in Krebs solution with or without 20 uM nicotine. Cells were fixed 90 sec after on set of stimulation with GA/PFA for 30 min. Fixed granule or cell pellets were washed, infiltrated with 2.3 M sucrose in PBS, mounted and frozen in liquid N2.


2018 ◽  
Vol 151 (2) ◽  
pp. 118-130 ◽  
Author(s):  
Prabhodh S. Abbineni ◽  
Mary A. Bittner ◽  
Daniel Axelrod ◽  
Ronald W. Holz

Upon fusion of the secretory granule with the plasma membrane, small molecules are discharged through the immediately formed narrow fusion pore, but protein discharge awaits pore expansion. Recently, fusion pore expansion was found to be regulated by tissue plasminogen activator (tPA), a protein present within the lumen of chromaffin granules in a subpopulation of chromaffin cells. Here, we further examined the influence of other lumenal proteins on fusion pore expansion, especially chromogranin A (CgA), the major and ubiquitous lumenal protein in chromaffin granules. Polarized TIRF microscopy demonstrated that the fusion pore curvature of granules containing CgA-EGFP was long lived, with curvature lifetimes comparable to those of tPA-EGFP–containing granules. This was surprising because fusion pore curvature durations of granules containing exogenous neuropeptide Y-EGFP (NPY-EGFP) are significantly shorter (80% lasting <1 s) than those containing CgA-EGFP, despite the anticipated expression of endogenous CgA. However, quantitative immunocytochemistry revealed that transiently expressed lumenal proteins, including NPY-EGFP, caused a down-regulation of endogenously expressed proteins, including CgA. Fusion pore curvature durations in nontransfected cells were significantly longer than those of granules containing overexpressed NPY but shorter than those associated with granules containing overexpressed tPA, CgA, or chromogranin B. Introduction of CgA to NPY-EGFP granules by coexpression converted the fusion pore from being transient to being longer lived, comparable to that found in nontransfected cells. These findings demonstrate that several endogenous chromaffin granule lumenal proteins are regulators of fusion pore expansion and that alteration of chromaffin granule contents affects fusion pore lifetimes. Importantly, the results indicate a new role for CgA. In addition to functioning as a prohormone, CgA plays an important role in controlling fusion pore expansion.


1970 ◽  
Vol 118 (2) ◽  
pp. 303-310 ◽  
Author(s):  
H. Winkler ◽  
Heide Hörtnagl ◽  
H. Hörtnagl ◽  
A. D. Smith

Washed membranes of bovine adrenal chromaffin granules contained most of the cholesterol and phospholipids of the particle and 22% of the total protein. The protein/lipid ratio was about 0.45 (w/w). Dopamine(3,4-dihydroxyphenethylamine)β-hydroxylase, Mg2+-activated nucleoside triphosphatase and cytochrome b-559 activities were present in the membrane. ATP was the best substrate for the nucleoside triphosphatase, whose pH optimum was 6.4, Km 7×10−4m and Vmax. 1.8μmol/h per mg of protein. Treatment of the membranes with various detergents caused a preferential solubilization of protein compared with lipids. Membranes dissolved in sodium dodecyl sulphate or phenol–acetic acid–urea were subjected to polyacrylamide-gel electrophoresis at alkaline and acid pH respectively. The electrophoretic patterns given by the proteins of the chromaffin granule membrane were distinct from those given by the chromogranins, and from those given by mitochondrial and microsomal membrane proteins.


1982 ◽  
Vol 202 (3) ◽  
pp. 759-770 ◽  
Author(s):  
M Grouselle ◽  
J H Phillips

Resealed bovine chromaffin-granule ‘ghosts’ were used for assaying the membrane-bound form of dopamine beta-hydroxylase. Hydroxylation of the substrate tyramine is dependent on its accumulation within the ‘ghosts’, where the active site of the enzyme is located. Free tyramine in the medium is at a low concentration, low ionic strength and a relatively high pH (7.0), so that even in the presence of a reducing agent (co-reductant) the unaccumulated amine is hydroxylated at a negligible rate. ‘Ghosts’ contain an endogenous co-reductant, which is shown to be catecholamine remaining in the membrane itself after granule lysis. Catecholamine that is free in solution in the medium or in the interior of the ‘ghosts’ is not effective as co-reductant, nor is ascorbate, in contrast with the situation with soluble dopamine beta-hydroxylase. Ferrocyanide is an active co-reductant, however, giving a hydroxylation rate approximately equal to the tyramine accumulation rate: it does not enter the ‘ghosts’, nor does the enzyme appear to utilize ferrocyanide sealed inside the ‘ghosts’. A mechanism must therefore exist for transferring electrons across the membrane from the cytoplasmic surface to the matrix surface. NADH is not an electron donor for the enzyme, nor is cytochrome b-561 involved.


Sign in / Sign up

Export Citation Format

Share Document