Immunogold labeling of the calcium binding protein synexin in isolated adrenal chromaffin granules and chromaffin cells

Author(s):  
Gemma A.J. Kuijpers ◽  
Harvey B. Pollard

Exocytotic fusion of granules in the adrenal medulla chromaffin cell is triggered by a rise in the concentration of cytosolic Ca2+ upon cell activation. The protein synexin, annexin VII, was originally found in the adrenal medulla and has been shown to cause aggregation and to support fusion of chromaffin granules in a Ca2+-dependent manner. We have previously suggested that synexin may there fore play a role in the exocytotic fusion process. In order to obtain more structural information on synexin, we performed immuno-electron microscopy on frozen ultrathin sections of both isolated chromaffin granules and chromaffin cells.Chromaffin granules were isolated from bovine adrenal medulla, and synexin was isolated from bovine lung. Granules were incubated in the presence or absence of synexin (24 μg per mg granule protein) and Ca2+ (1 mM), which induces maximal granule aggregation, in 0.3M sucrose-40m MMES buffer(pH 6.0). Granules were pelleted, washed twice in buffer without synexin and fixed with 2% glutaraldehyde- 2% para formaldehyde in 0.1 M phosphate buffer (GA/PFA) for 30 min. Chromaffin cells were isolated and cultured for 3-5 days, and washed and incubated in Krebs solution with or without 20 uM nicotine. Cells were fixed 90 sec after on set of stimulation with GA/PFA for 30 min. Fixed granule or cell pellets were washed, infiltrated with 2.3 M sucrose in PBS, mounted and frozen in liquid N2.

2005 ◽  
Vol 186 (2) ◽  
pp. R1-R5 ◽  
Author(s):  
Damien J Keating ◽  
Chen Chen

Activin A is a member of the transforming growth factor-β family and has known roles in the adrenal cortex, from which activin A is secreted. We aimed to find whether activin A induces secretion of catecholamines from chromaffin cells of the adrenal medulla, which neighbours the adrenal cortex in vivo. Using carbon fibre amperometry, we were able to measure catecholamine secretion in real-time from single chromaffin cells dissociated from the rat adrenal medulla. Activin A stimulated catecholamine secretion in a rapid and dose-dependent manner from chromaffin cells. This effect was fully reversible upon washout of activin A. The minimum dose at which activin A had a maximal effect was 2 nM, with an EC50 of 1.1 nM. The degree of secretion induced by activin A (2 nM) was smaller than that due to membrane depolarization caused by an increase in the external K+ concentration from 5 to 70 mM. No response to activin A was seen when Ca2+ channels were blocked by Cd2+ (200 μM). We conclude from these findings that activin A is capable of stimulating a robust level of catecholamine secretion from adrenal chromaffin cells in a concentration-dependent manner. This occurs via the opening of voltage-gated Ca2+ channels, causing Ca2+ entry, thereby triggering exocytosis. These findings illustrate a new physiological role of activin A and a new mechanism in the control of catecholamine secretion from the adrenal medulla.


1996 ◽  
Vol 5 (2) ◽  
pp. 257-267 ◽  
Author(s):  
Kimberly A. Czech ◽  
Raymond Pollak ◽  
George D. Pappas ◽  
Jacqueline Sagen

Adrenal chromaffin cells have been utilized for several neural grafting applications, but limitations in allogeneic donor availability and dangers inherent in auto-grafting limit the widespread use of this approach clinically. While xenogeneic donors offer promise as a source for cell transplantation in the central nervous system (CNS), immunologic responses to cellular components of the adrenal medulla have not been well characterized. To further study the host T cell xenogeneic response to chromaffin and passenger cells of the adrenal medulla, an in vitro lymphocyte proliferation assay was used. Lymphocyte proliferation was determined by mixing rat lymphocytes with potential stimulator cell subpopulations of the bovine adrenal medulla: isolated chromaffin cells, isolated endothelial cells, or passenger nonchromaffin cells, which include a mixture of fibroblasts, smooth muscle cells, and endothelial cells. As a positive control, bovine aortic endothelial cells were also used. 3[H]-thymidine incorporation, corresponding to lymphocyte proliferation, was measured. Results indicated that isolated bovine chromaffin cells produce only a mild, statistically insignificant stimulation of rat lymphocytes. In contrast, there was a significant response to passenger nonchromaffin cells of the adrenal medulla, especially endothelial cells. The inclusion of low levels of cyclosporin A in the cultures completely eliminated the mild proliferative response to isolated bovine chromaffin cells, while near toxic levels were necessary to abrogate the response to endothelial cells. Immunocytochemical analysis revealed that routine chromaffin cell isolation procedures result in the inclusion of a small percentage of endothelial cells, which may be responsible for the slight lymphocyte stimulation. The results of this study indicate that isolated chromaffin cells possess low immunogenicity, and suggest that passenger cells in the adrenal medulla, particularly endothelial cells, may be primarily responsible for progressive rejection in CNS grafts. Thus, removal of passenger nonchromaffin cells from xenogeneic donor tissues prior to transplantation may produce a more tolerated graft in rodent models of neural transplantation.


Biochimie ◽  
1994 ◽  
Vol 76 (5) ◽  
pp. 404-409 ◽  
Author(s):  
M.A. Günther Sillero ◽  
M. Del Valle ◽  
E. Zaera ◽  
P. Michelena ◽  
A.G. García ◽  
...  

1988 ◽  
Vol 116 (1) ◽  
pp. 149-NP ◽  
Author(s):  
M. Jousselin-Hosaja

ABSTRACT The effects of long-term transplantation on the ultrastructure of adrenaline- and noradrenaline-storing cells from the adrenal medulla were determined using morphometric methods. Mouse adrenal medulla were freed from the adrenal cortex and grafted into the occipital cortex of the brain. Two types of chromaffin cells were identified by electron microscopy in grafts fixed with glutaraldehyde and osmium tetroxide. Noradrenaline-type cells were predominant and formed 70–80% of the surviving population of grafted chromaffin cells. A minority of the chromaffin cells contained medium-sized granules (140–210 nm in diameter) (medium granule cell; MGC) with finely granular moderately electron dense cores. Morphometric analysis of noradrenaline phenotype cells and MGC cells in transplants showed no significant differences compared with the noradrenaline-storing cells of normal adrenal glands. In contrast, noradrenaline-type cells and MGC cells in the grafts had areas of secretory vesicles which were significantly (P<0·01) larger and areas of rough endoplasmic reticulum which were significantly (P<0 ·01) smaller than those of the adrenaline-storing cells of normal adrenal glands. It was concluded that long-term transplantation caused no degenerative changes in the ultrastructure of mouse adrenal chromaffin cells. J. Endocr. (1988) 116, 149–153


Development ◽  
2002 ◽  
Vol 129 (20) ◽  
pp. 4729-4738 ◽  
Author(s):  
Katrin Huber ◽  
Barbara Brühl ◽  
François Guillemot ◽  
Eric N. Olson ◽  
Uwe Ernsberger ◽  
...  

The sympathoadrenal (SA) cell lineage is a derivative of the neural crest (NC), which gives rise to sympathetic neurons and neuroendocrine chromaffin cells. Signals that are important for specification of these two types of cells are largely unknown. MASH1 plays an important role for neuronal as well as catecholaminergic differentiation. Mash1 knockout mice display severe deficits in sympathetic ganglia, yet their adrenal medulla has been reported to be largely normal suggesting that MASH1 is essential for neuronal but not for neuroendocrine differentiation. We show now that MASH1 function is necessary for the development of the vast majority of chromaffin cells. Most adrenal medullary cells in Mash1–/– mice identified by Phox2b immunoreactivity, lack the catecholaminergic marker tyrosine hydroxylase. Mash1 mutant and wild-type mice have almost identical numbers of Phox2b-positive cells in their adrenal glands at embryonic day (E) 13.5; however, only one-third of the Phox2b-positive adrenal cell population seen in Mash1+/+ mice is maintained in Mash1–/– mice at birth. Similar to Phox2b, cells expressing Phox2a and Hand2 (dHand) clearly outnumber TH-positive cells. Most cells in the adrenal medulla of Mash1–/– mice do not contain chromaffin granules, display a very immature, neuroblast-like phenotype, and, unlike wild-type adrenal chromaffin cells, show prolonged expression of neurofilament and Ret comparable with that observed in wild-type sympathetic ganglia. However, few chromaffin cells in Mash1–/– mice become PNMT positive and downregulate neurofilament and Ret expression. Together, these findings suggest that the development of chomaffin cells does depend on MASH1 function not only for catecholaminergic differentiation but also for general chromaffin cell differentiation.


1990 ◽  
Vol 73 (3) ◽  
pp. 418-428 ◽  
Author(s):  
Jeffrey H. Kordower ◽  
Massimo S. Fiandaca ◽  
Mary F. D. Notter ◽  
John T. Hansen ◽  
Don M. Gash

✓ Autopsy results on patients and corresponding studies in nonhuman primates have revealed that autografts of adrenal medulla into the striatum, used as a treatment for Parkinson's disease, do not survive well. Because adrenal chromaffin cell viability may be limited by the low levels of available nerve growth factor (NGF) in the striatum, the present study was conducted to determine if transected peripheral nerve segments could provide sufficient levels of NGF to enhance chromaffin cell survival in vitro and in vivo. Aged female rhesus monkeys, rendered hemiparkinsonian by the drug MPTP (n-methyl-4-phenyl-1,2,3,6 tetrahydropyridine), received autografts into the striatum using a stereotactic approach, of either sural nerve or adrenal medulla, or cografts of adrenal medulla and sural nerve (three animals in each group). Cell cultures were established from tissue not used in the grafts. Adrenal chromaffin cells either cocultured with sural nerve segments or exposed to exogenous NGF differentiated into a neuronal phenotype. Chromaffin cell survival, when cografted with sural nerve into the striatum, was enhanced four- to eightfold from between 8000 and 18,000 surviving cells in grafts of adrenal tissue only up to 67,000 surviving chromaffin cells in cografts. In grafts of adrenal tissue only, the implant site consisted of an inflammatory focus. Surviving chromaffin cells, which could be identified by both chromogranin A and tyrosine hydroxylase staining, retained their endocrine phenotype. Cografted chromaffin cells exhibited multipolar neuritic processes and numerous chromaffin granules, and were also immunoreactive for tyrosine hydroxylase and chromogranin A. Blood vessels within the graft were fenestrated, indicating that the blood-brain barrier was not intact. Additionally, cografted chromaffin cells were observed in a postsynaptic relationship with axon terminals from an undetermined but presumably a host origin.


Sign in / Sign up

Export Citation Format

Share Document