scholarly journals Transport from late endosomes to lysosomes, but not sorting of integral membrane proteins in endosomes, depends on the vacuolar proton pump.

1995 ◽  
Vol 130 (4) ◽  
pp. 821-834 ◽  
Author(s):  
A W van Weert ◽  
K W Dunn ◽  
H J Gueze ◽  
F R Maxfield ◽  
W Stoorvogel

Endocytosed proteins are sorted in early endosomes to be recycled to the plasma membrane or transported further into the degradative pathway. We studied the role of endosomes acidification on the endocytic trafficking of the transferrin receptor (TfR) as a representative for the recycling pathway, the cation-dependent mannose 6-phosphate receptor (MPR) as a prototype for transport to late endosomes, and fluid-phase endocytosed HRP as a marker for transport to lysosomes. Toward this purpose, bafilomycin A1 (Baf), a specific inhibitor of the vacuolar proton pump, was used to inhibit acidification of the vacuolar system. Microspectrofluorometric measurement of the pH of fluorescein-rhodamine-conjugated transferrin (Tf)-containing endocytic compartments in living cells revealed elevated endosomal pH values (pH > 7.0) within 2 min after addition of Baf. Although recycling of endocytosed Tf to the plasma membrane continued in the presence of Baf, recycled Tf did not dissociate from its receptor, indicating failure of Fe3+ release due to a neutral endosomal pH. In the presence of Baf, the rates of internalization and recycling of Tf were reduced by a factor of 1.40 +/- 0.08 and 1.57 +/- 0.25, respectively. Consequently, little if any in TfR expression at the cell surface was measured during Baf treatment. Sorting between endocytosed TfR and MPR was analyzed by the HRP-catalyzed 3,3'-diaminobenzidine cross-linking technique, using transferrin conjugated to HRP to label the endocytic pathway of the TfR. In the absence of Baf, endocytosed surface 125I-labeled MPR was sorted from the TfR pathway starting at 10 min after uptake, reaching a plateau of 40% after 45 min. In the presence of Baf, sorting was initiated after 20 min of uptake, reaching approximately 40% after 60 min. Transport of fluid-phase endocytosed HRP to late endosomes and lysosomes was measured using cell fractionation and immunogold electron microscopy. Baf did not interfere with transport of HRP to MPR-labeled late endosomes, but nearly completely abrogated transport to cathepsin D-labeled lysosomes. From these results, we conclude that trafficking through early and late endosomes, but not to lysosomes, continued upon inactivation of the vacuolar proton pump.

1992 ◽  
Vol 103 (4) ◽  
pp. 1139-1152
Author(s):  
J.W. Kok ◽  
K. Hoekstra ◽  
S. Eskelinen ◽  
D. Hoekstra

Recycling pathways of the sphingolipid glucosylceramide were studied by employing a fluorescent analog of glucosylceramide, 6(-)[N-(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]hexanoylglucosyl sphingosine (C6-NBD-glucosylceramide). Direct recycling of the glycolipid from early endosomes to the plasma membrane occurs, as could be shown after treating the cells with the microtubule-disrupting agent nocodazole, which causes inhibition of the glycolipid's trafficking from peripheral early endosomes to centrally located late endosomes. When the microtubuli are intact, at least part of the glucosylceramide is transported from early to late endosomes together with ricin. Interestingly, also N-(lissamine rhodamine B sulfonyl)phosphatidylethanolamine (N-Rh-PE), a membrane marker of the fluid-phase endocytic pathway, is transported to this endosomal compartment. However, in contrast to both ricin and N-Rh-PE, the glucosylceramide can escape from this organelle and recycle to the plasma membrane. Monensin and brefeldin A have little effect on this recycling pathway, which would exclude extensive involvement of early Golgi compartments in recycling. Hence, the small fraction of the glycolipid that colocalizes with transferrin (Tf) in the Golgi area might directly recycle via the trans-Golgi network. When the intracellular pH was lowered to 5.5, recycling was drastically reduced, in accordance with the impeding effect of low intracellular pH on vesicular transport during endocytosis and in the biosynthetic pathway. Our results thus demonstrate the existence of at least two recycling pathways for glucosylceramide and indicate the relevance of early endosomes in recycling of both proteins and lipids.


2000 ◽  
Vol 11 (10) ◽  
pp. 3289-3298 ◽  
Author(s):  
Wolfram Antonin ◽  
Claudia Holroyd ◽  
Ritva Tikkanen ◽  
Stefan Höning ◽  
Reinhard Jahn

Endobrevin/VAMP-8 is an R-SNARE localized to endosomes, but it is unknown in which intracellular fusion step it operates. Using subcellular fractionation and quantitative immunogold electron microscopy, we found that endobrevin/VAMP-8 is present on all membranes known to communicate with early endosomes, including the plasma membrane, clathrin-coated pits, late endosomes, and membranes of thetrans-Golgi network. Affinity-purified antibodies that block the ability of endobrevin/VAMP-8 to form SNARE core complexes potently inhibit homotypic fusion of both early and late endosomes in vitro. Fab fragments were as active as intact immunoglobulin Gs. Recombinant endobrevin/VAMP-8 inhibited both fusion reactions with similar potency. We conclude that endobrevin/VAMP-8 operates as an R-SNARE in the homotypic fusion of early and late endosomes.


1991 ◽  
Vol 112 (2) ◽  
pp. 245-255 ◽  
Author(s):  
J E Park ◽  
J M Lopez ◽  
E B Cluett ◽  
W J Brown

Cells contain an intracellular compartment that serves as both the "prelysosomal" delivery site for newly synthesized lysosomal enzymes by the mannose 6-phosphate (Man6P) receptor and as a station along the endocytic pathway to lysosomes. We have obtained mAbs to a approximately 57-kD membrane glycoprotein, (called here plgp57), found predominantly in this prelysosomal endosome compartment. This conclusion is supported by the following results: (a) plgp57 was primarily found in a population of late endosomes that were located just distal to the 20 degrees C block site in the endocytic pathway to lysosomes (approximately 83% of the prelysosomes were positive for plgp57 but less than 5% of the early endosomes had detectable amounts of this marker); (b) plgp57 and the cation-independent (CI) Man6P receptor were located in many of the same intracellular vesicles; (c) plgp57 was found in the membranes of an acidic compartment; (d) immunoelectron microscopy showed that plgp57 was located in characteristic multilamellar- and multivesicular-type vacuoles believed to be prelysosomal endosomes; and (e) cell fractionation studies demonstrated that plgp57 was predominantly found in low density organelles which comigrated with late endosomes and CI Man6P receptors, and only approximately 10-15% of the antigen was found in high density fractions containing the majority of secondary lysosomes. These results indicate that plgp57 is a novel marker for a unique prelysosomal endosome compartment that is the site of confluence of the endocytic and biosynthetic pathways to lysosomes.


1998 ◽  
Vol 72 (12) ◽  
pp. 9645-9655 ◽  
Author(s):  
Nora Bayer ◽  
Daniela Schober ◽  
Elisabeth Prchla ◽  
Robert F. Murphy ◽  
Dieter Blaas ◽  
...  

ABSTRACT Bafilomycin A1 (baf), a specific inhibitor of vacuolar proton ATPases, is commonly employed to demonstrate the requirement of low endosomal pH for viral uncoating. However, in certain cell types baf also affects the transport of endocytosed material from early to late endocytic compartments. To characterize the endocytic route in HeLa cells that are frequently used to study early events in viral infection, we used 35S-labeled human rhinovirus serotype 2 (HRV2) together with various fluid-phase markers. These virions are taken up via receptor-mediated endocytosis and undergo a conformational change to C-antigenic particles at a pH of <5.6, resulting in release of the genomic RNA and ultimately in infection (E. Prchla, E. Kuechler, D. Blaas, and R. Fuchs, J. Virol. 68:3713–3723, 1994). As revealed by fluorescence microscopy and subcellular fractionation of microsomes by free-flow electrophoresis (FFE), baf arrests the transport of all markers in early endosomes. In contrast, the microtubule-disrupting agent nocodazole was found to inhibit transport by accumulating marker in endosomal carrier vesicles (ECV), a compartment intermediate between early and late endosomes. Accordingly, lysosomal degradation of HRV2 was suppressed, whereas its conformational change and infectivity remained unaffected by this drug. Analysis of the subcellular distribution of HRV2 and fluid-phase markers in the presence of nocodazole by FFE revealed no difference from the control incubation in the absence of nocodazole. ECV and late endosomes thus have identical electrophoretic mobilities, and intraluminal pHs of <5.6 and allow uncoating of HRV2. As bafilomycin not only dissipates the low endosomal pH but also blocks transport from early to late endosomes in HeLa cells, its inhibitory effect on viral infection could in part also be attributed to trapping of virus in early endosomes which might lack components essential for uncoating. Consequently, inhibition of viral uncoating by bafilomycin cannot be taken to indicate a low pH requirement only.


2000 ◽  
Vol 150 (5) ◽  
pp. 1013-1026 ◽  
Author(s):  
Eva M. Neuhaus ◽  
Thierry Soldati

Geometry-based mechanisms have been proposed to account for the sorting of membranes and fluid phase in the endocytic pathway, yet little is known about the involvement of the actin–myosin cytoskeleton. Here, we demonstrate that Dictyostelium discoideum myosin IB functions in the recycling of plasma membrane components from endosomes back to the cell surface. Cells lacking MyoB (myoA−/B−, and myoB− cells) and wild-type cells treated with the myosin inhibitor butanedione monoxime accumulated a plasma membrane marker and biotinylated surface proteins on intracellular endocytic vacuoles. An assay based on reversible biotinylation of plasma membrane proteins demonstrated that recycling of membrane components is severely impaired in myoA/B null cells. In addition, MyoB was specifically found on magnetically purified early pinosomes. Using a rapid-freezing cryoelectron microscopy method, we observed an increased number of small vesicles tethered to relatively early endocytic vacuoles in myoA−/B− cells, but not to later endosomes and lysosomes. This accumulation of vesicles suggests that the defects in membrane recycling result from a disordered morphology of the sorting compartment.


2001 ◽  
Vol 114 (10) ◽  
pp. 1935-1947 ◽  
Author(s):  
R. Zahn ◽  
B.J. Stevenson ◽  
S. Schroder-Kohne ◽  
B. Zanolari ◽  
H. Riezman ◽  
...  

end13-1 was isolated in a screen for endocytosis mutants and has been shown to have a post-internalisation defect in endocytic transport as well as a defect in vacuolar protein sorting (Vps(-) phenotype), leading to secretion of newly synthesised vacuolar proteins. Here we demonstrate that END13 is identical to VPS4, encoding an AAA (ATPase associated with a variety of cellular activities)-family ATPase. We also report that the end13-1 mutation is a serine 335 to phenylalanine substitution in the AAA-ATPase domain of End13p/Vps4p. It has been reported that mutant cells lacking End13p/Vps4p (end13(vps4)((Dgr;)) accumulate endocytosed marker dyes, plasma membrane receptors and newly synthesised vacuolar hydrolase precursors in an endosomal compartment adjacent to the vacuole (prevacuolar compartment, or PVC). We find, however, that the end13 mutants have defects in transport of endocytosed fluorescent dyes, plasma membrane receptors and ligands from small peripherally located early endosomes to larger late endosomes, which are often located adjacent to the vacuole. Our results indicate that End13p/Vps4p may play an important role in multiple steps of membrane traffic through the endocytic pathway.


1993 ◽  
Vol 177 (3) ◽  
pp. 583-596 ◽  
Author(s):  
P Romagnoli ◽  
C Layet ◽  
J Yewdell ◽  
O Bakke ◽  
R N Germain

Invariant chain (Ii), which associates with major histocompatibility complex (MHC) class II molecules in the endoplasmic reticulum, contains a targeting signal for transport to intracellular vesicles in the endocytic pathway. The characteristics of the target vesicles and the relationship between Ii structure and class II localization in distinct endosomal subcompartments have not been well defined. We demonstrate here that in transiently transfected COS cells expressing high levels of the p31 or p41 forms of Ii, uncleaved Ii is transported to and accumulates in transferrin-accessible (early) endosomes. Coexpressed MHC class II is also found in this same compartment. These early endosomes show altered morphology and a slower rate of content movement to later parts of the endocytic pathway. At more moderate levels of Ii expression, or after removal of a highly conserved region in the cytoplasmic tail of Ii, coexpressed class II molecules are found primarily in vesicles with the characteristics of late endosomes/prelysosomes. The Ii chains in these late endocytic vesicles have undergone proteolytic cleavage in the lumenal region postulated to control MHC class II peptide binding. These data indicate that the association of class II with Ii results in initial movement to early endosomes. At high levels of Ii expression, egress to later endocytic compartments is delayed and class II-Ii complexes accumulate together with endocytosed material. At lower levels of Ii expression, class II-Ii complexes are found primarily in late endosomes/prelysosomes. These data provide evidence that the route of class II transport to the site of antigen processing and loading involves movement through early endosomes to late endosomes/prelysosomes. Our results also reveal an unexpected ability of intact Ii to modify the structure and function of the early endosomal compartment, which may play a role in regulating this processing pathway.


1994 ◽  
Vol 107 (5) ◽  
pp. 1289-1295 ◽  
Author(s):  
V. Duprez ◽  
M. Smoljanovic ◽  
M. Lieb ◽  
A. Dautry-Varsat

The T lymphocyte growth factor interleukin 2 binds to surface high-affinity receptors and is rapidly internalized and degraded in acidic organelles. The alpha and beta chains of high-affinity interleukin 2 receptors are internalized together with interleukin 2. To identify the intracellular pathway followed by interleukin 2, we have compared the subcellular distribution of interleukin 2, transferrin and a fluid-phase marker, horseradish peroxidase, in the human T cell line IARC 301.5. Transferrin was used as a marker of early and recycling endosomes, and horseradish peroxidase to probe for the whole endocytic pathway. Fractionation of intracellular organelles on a discontinuous sucrose gradient showed that internalized interleukin 2 is initially mostly found in compartments with similar densities to transferrin, e.g. early and recycling endosomes. The kinetics of entry and exit of interleukin 2 from such organelles was much slower than that of transferrin. Later on, interleukin 2 is predominantly found in dense lysosome-containing fractions. Very little, if any, interleukin 2 was found in fractions corresponding to late endosomes containing horseradish peroxidase. These results suggest that, after endocytosis, interleukin 2 enters early or recycling endosomes before it reaches dense lysosomes.


2001 ◽  
Vol 114 (22) ◽  
pp. 4041-4049 ◽  
Author(s):  
Rosana Mesa ◽  
Cristina Salomón ◽  
Marcelo Roggero ◽  
Philip D. Stahl ◽  
Luis S. Mayorga

Soon after endocytosis, internalized material is sorted along different pathways in a process that requires the coordinated activity of several Rab proteins. Although abundant information is available about the subcellular distribution and function of some of the endocytosis-specific Rabs (e.g. Rab5 and Rab4), very little is known about some other members of this family of proteins. To unveil some of the properties of Rab22a, one of the less studied endosome-associated small GTPases, we have expressed the protein tagged with the green fluorescent protein in CHO cells. The results indicate that Rab22a associates with early and late endosomes (labeled by a 5 minute rhodamine-transferrin uptake and the cation-independent mannose 6-phosphate receptor, respectively) but not with lysosomes (labeled by 1 hour rhodamine horseradish peroxidase uptake followed by 1 hour chase). Overexpression of the protein causes a prominent morphological enlargement of the early and late endosomes. Two mutants were generated by site-directed mutagenesis, a negative mutant (Rab22aS19N, with reduced affinity for GTP) and a constitutively active mutant (Rab22aQ64L, with reduced endogenous GTPase activity). The distribution of the negative mutant was mostly cytosolic, whereas the positive mutant associated with early and late endosomes and, interestingly also with lysosomes and autophagosomes (labeled with monodansylcadaverine). Cells expressing Rab22a wild type and Rab22aS19N displayed decreased endocytosis of a fluid phase marker. Conversely, overexpression of Rab22aQ64L, which strongly affects the morphology of endosomes, did not inhibit bulk endocytosis. Our results show that Rab22a has a unique distribution along the endocytic pathway that is not shared by any other Rab protein, and that it strongly affects the morphology and function of endosomes.


2001 ◽  
Vol 12 (9) ◽  
pp. 2790-2799 ◽  
Author(s):  
Elizabeth M. Bennett ◽  
Sharron X. Lin ◽  
Mhairi C. Towler ◽  
Frederick R. Maxfield ◽  
Frances M. Brodsky

Clathrin-coated vesicles execute receptor-mediated endocytosis at the plasma membrane. However, a role for clathrin in later endocytic trafficking processes, such as receptor sorting and recycling or maintaining the organization of the endocytic pathway, has not been thoroughly characterized. The existence of clathrin-coated buds on endosomes suggests that clathrin might mediate later endocytic trafficking events. To investigate the function of clathrin-coated buds on endosomal membranes, endosome function and distribution were analyzed in a HeLa cell line that expresses the dominant-negative clathrin inhibitor Hub in an inducible manner. As expected, Hub expression reduced receptor-mediated endocytosis at the plasma membrane. Hub expression also induced a perinuclear aggregation of early endosome antigen 1-positive early endosomes, such that sorting and recycling endosomes were found tightly concentrated in the perinuclear region. Despite the dramatic redistribution of endosomes, Hub expression did not affect the overall kinetics of receptor sorting or recycling. These data show that clathrin function is necessary to maintain proper cellular distribution of early endosomes but does not play a prominent role in sorting and recycling events. Thus, clathrin's role on endosomal membranes is to influence organelle localization and is distinct from its role in trafficking pathways at the plasma membrane and trans-Golgi network.


Sign in / Sign up

Export Citation Format

Share Document