recycling pathway
Recently Published Documents


TOTAL DOCUMENTS

216
(FIVE YEARS 41)

H-INDEX

49
(FIVE YEARS 4)

Author(s):  
Junya Hasegawa ◽  
Yasunori Uchida ◽  
Kojiro Mukai ◽  
Shoken Lee ◽  
Tatsuyuki Matsudaira ◽  
...  

Cells internalize proteins and lipids in the plasma membrane (PM) and solutes in the extracellular space by endocytosis. The removal of PM by endocytosis is constantly balanced by the replenishment of proteins and lipids to PM through recycling pathway. Recycling endosomes (REs) are specific subsets of endosomes. Besides the established role of REs in recycling pathway, recent studies have revealed unanticipated roles of REs in membrane traffic and cell signalling. In this review, we highlight these emerging issues, with a particular focus on phosphatidylserine (PS), a phospholipid that is highly enriched in the cytosolic leaflet of RE membranes. We also discuss the pathogenesis of Hermansky Pudlak syndrome type 2 (HPS2) that arises from mutations in the AP3B1 gene, from the point of view of dysregulated RE functions.


mBio ◽  
2021 ◽  
Author(s):  
Yunfei Dai ◽  
Victor Pinedo ◽  
Amy Y. Tang ◽  
Felipe Cava ◽  
Edward Geisinger

To grow efficiently, resist antibiotics, and control the immune response, bacteria recycle parts of their cell wall. A key step in the typical recycling pathway is the reuse of cell wall peptides by an enzyme known as an l , d -carboxypeptidase (LDC). Acinetobacter baumannii , an “urgent-threat” pathogen causing drug-resistant sepsis in hospitals, was previously thought to lack this enzymatic activity due to absence of a known LDC homolog.


2021 ◽  
Author(s):  
Shawn P Shortill ◽  
Mia S Frier ◽  
Michael Davey ◽  
Elizabeth Conibear

Membrane trafficking pathways perform important roles in establishing and maintaining the endolysosomal network. Retrograde protein sorting from the endosome is promoted by conserved SNX–BAR–containing coat complexes including retromer which enrich cargo at tubular microdomains and generate transport carriers. In metazoans, retromer cooperates with VARP, a conserved VPS9–domain GEF, to direct an endosomal recycling pathway. The function of the yeast VARP homolog Vrl1 has been overlooked due an inactivating mutation in commonly studied strains. Here, we demonstrate that Vrl1 has features of a SNX–BAR coat protein and forms an obligate complex with Vin1, the paralog of the retromer SNX–BAR protein Vps5. Unique features in the Vin1 N–terminus allow Vrl1 to distinguish it from Vps5, thereby forming what we have named the VINE complex. VINE occupies endosomal tubules and promotes the delivery of a conserved mannose 6–phosphate receptor–like protein to the vacuolar membrane. In addition to sorting functions, membrane recruitment by Vin1 is essential for Vrl1 GEF activity, suggesting that VINE is a multifunctional coat complex that regulates trafficking and signaling events at the endosome.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2590
Author(s):  
Enriqueta Alós ◽  
Florencia Rey ◽  
José Vicente Gil ◽  
María Jesús Rodrigo ◽  
Lorenzo Zacarias

Citrus fruit is one of the most important contributors to the ascorbic acid (AsA) intake in humans. Here, we report a comparative analysis of AsA content and transcriptional changes of genes related to its metabolism during development of petals, leaves and fruits of Valencia Late oranges (Citrus sinensis). Petals of close flowers and at anthesis contained the highest concentration of AsA. In fruits, AsA content in the flavedo reached a maximum at color break, whereas the pulp accumulated lower levels and experienced minor fluctuations during development. AsA levels in leaves were similar to those in the flavedo at breaker stage. The transcriptional profiling of AsA biosynthetic, degradation, and recycling genes revealed a complex and specific interplay of the different pathways for each tissue. The D-galacturonic acid pathway appeared to be relevant in petals, whereas in leaves the L-galactose pathway (GGP and GME) also contributed to AsA accumulation. In the flavedo, AsA content was positively correlated with the expression of GGP of the L-galactose pathway and negatively with DHAR1 gene of the recycling pathway. In the pulp, AsA appeared to be mainly controlled by the coordination among the D-galacturonic acid pathway and the MIOX and GalDH genes. Analysis of the promoters of AsA metabolism genes revealed a number of cis-acting elements related to developmental signals, but their functionalities remain to be investigated.


MedComm ◽  
2021 ◽  
Author(s):  
Lin Zhao ◽  
Kunhong Zhong ◽  
Jia Zhao ◽  
Xin Yong ◽  
Aiping Tong ◽  
...  

2021 ◽  
Author(s):  
Franziska Paul ◽  
Calista Ng ◽  
Shahriar Nafissi ◽  
Yalda Nilipoor ◽  
Ali Reza Tavasoli ◽  
...  

Rabenosyn (RBSN) is a conserved endosomal protein necessary for regulating internalized cargo. Here, we present genetic, cellular and biochemical evidence that two distinct RBSN missense variants are responsible for a novel Mendelian disorder consisting of progressive muscle weakness, facial dysmorphisms, ophthalmoplegia and intellectual disability. Using exome sequencing, we identified recessively-acting germline alleles p.Arg180Gly and p.Gly183Arg which are both situated in the FYVE domain of RBSN. We find that these variants abrogate binding to its cognate substrate PI3P and thus prevent its translocation to early endosomes. Although the endosomal recycling pathway was unaltered, mutant p.Gly183Arg patient fibroblasts exhibit accumulation of cargo tagged for lysosomal degradation. Our results suggest that these variants are separation-of-function alleles, which cause a delay in endosomal maturation without affecting cargo recycling. We conclude that distinct germline mutations in RBSN cause non-overlapping phenotypes with specific and discrete endolysosomal cellular defects.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Sho W Suzuki ◽  
Akihiko Oishi ◽  
Nadia Nikulin ◽  
Jeff R Jorgensen ◽  
Matthew G Baile ◽  
...  

Membrane protein recycling systems are essential for maintenance of the endosome-lysosome system. In yeast, retromer and Snx4 coat complexes are recruited to the endosomal surface where they recognize cargos. They sort cargo and deform the membrane into recycling tubules that bud from the endosome and target to the Golgi. Here, we reveal that the SNX-BAR protein, Mvp1, mediates an endosomal recycling pathway which is mechanistically distinct from the retromer and Snx4 pathways. Mvp1 deforms the endosomal membrane and sorts cargos containing a specific sorting motif into a membrane tubule. Subsequently, Mvp1 recruits the dynamin-like GTPase Vps1 to catalyze membrane scission and release of the recycling tubule. Similarly, SNX8, the human homolog of Mvp1, which has been also implicated in Alzheimer's disease, mediates formation of an endosomal recycling tubule. Thus, we present evidence for a novel endosomal retrieval pathway that is conserved from yeast to humans.


2021 ◽  
Vol 12 ◽  
Author(s):  
José F. Sánchez-Sevilla ◽  
Miguel A. Botella ◽  
Victoriano Valpuesta ◽  
Victoria Sanchez-Vera

Autophagy is a catabolic and recycling pathway that maintains cellular homeostasis under normal growth and stress conditions. Two major types of autophagy, microautophagy and macroautophagy, have been described in plants. During macroautophagy, cellular content is engulfed by a double-membrane vesicle called autophagosome. This vesicle fuses its outer membrane with the tonoplast and releases the content into the vacuole for degradation. During certain developmental processes, autophagy is enhanced by induction of several autophagy-related genes (ATG genes). Autophagy in crop development has been studied in relation to leaf senescence, seed and reproductive development, and vascular formation. However, its role in fruit ripening has only been partially addressed. Strawberry is an important berry crop, representative of non-climacteric fruit. We have analyzed the occurrence of autophagy in developing and ripening fruits of the cultivated strawberry. Our data show that most ATG genes are conserved in the genome of the cultivated strawberry Fragaria x ananassa and they are differentially expressed along the ripening of the fruit receptacle. ATG8-lipidation analysis proves the presence of two autophagic waves during ripening. In addition, we have confirmed the presence of autophagy at the cellular level by the identification of autophagy-related structures at different stages of the strawberry ripening. Finally, we show that blocking autophagy either biochemically or genetically dramatically affects strawberry growth and ripening. Our data support that autophagy is an active and essential process with different implications during strawberry fruit ripening.


Author(s):  
Martín M. Pérez ◽  
Fabiana A. Rossi ◽  
Germán A. Sabio ◽  
Pablo A. Bochicchio ◽  
María C. Leal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document