endosomal ph
Recently Published Documents


TOTAL DOCUMENTS

144
(FIVE YEARS 30)

H-INDEX

34
(FIVE YEARS 4)

Author(s):  
Zhenfeng Wang ◽  
Jiadi Lv ◽  
Pin Yu ◽  
Yajin Qu ◽  
Yabo Zhou ◽  
...  

AbstractExploring the cross-talk between the immune system and advanced biomaterials to treat SARS-CoV-2 infection is a promising strategy. Here, we show that ACE2-overexpressing A549 cell-derived microparticles (AO-MPs) are a potential therapeutic agent against SARS-CoV-2 infection. Intranasally administered AO-MPs dexterously navigate the anatomical and biological features of the lungs to enter the alveoli and are taken up by alveolar macrophages (AMs). Then, AO-MPs increase the endosomal pH but decrease the lysosomal pH in AMs, thus escorting bound SARS-CoV-2 from phago-endosomes to lysosomes for degradation. This pH regulation is attributable to oxidized cholesterol, which is enriched in AO-MPs and translocated to endosomal membranes, thus interfering with proton pumps and impairing endosomal acidification. In addition to promoting viral degradation, AO-MPs also inhibit the proinflammatory phenotype of AMs, leading to increased treatment efficacy in a SARS-CoV-2-infected mouse model without side effects. These findings highlight the potential use of AO-MPs to treat SARS-CoV-2-infected patients and showcase the feasibility of MP therapies for combatting emerging respiratory viruses in the future.


2021 ◽  
Author(s):  
Luca Murer ◽  
Anthony Petkidis ◽  
Thomas Vallet ◽  
Marco Vignuzzi ◽  
Urs F. Greber

Rhinoviruses (RVs) cause recurrent infections of the nasal and pulmonary tracts, life-threatening conditions in chronic respiratory illness patients, predisposition of children to asthmatic exacerbation, and large economic cost. RVs are difficult to treat. They rapidly evolve resistance, and are genetically diverse. Here, we provide insight into RV drug resistance mechanisms against chemical compounds neutralizing low pH in endo-lysosomes. Serial passaging of RV-A16 in presence of the vacuolar proton ATPase inhibitor bafilomycin A1 (BafA1) or the endo-lysosomotropic agent ammonium chloride (NH 4 Cl) promoted the emergence of resistant virus populations. We found two reproducible point mutations in the viral proteins 1 and 3 (VP1, VP3), A2526G (serine 66 to asparagine; S66N), and G2274U (cysteine 220 to phenylalanine; C220F), respectively. Both mutations conferred cross-resistance to BafA1, NH 4 Cl, and the protonophore niclosamide, as identified by massive parallel sequencing and reverse genetics, but not the double mutation, which we could not rescue. Both VP1-S66 and VP3-C220 locate at the interprotomeric face, and their mutations increase the sensitivity of virions to low pH, elevated temperature and soluble intercellular adhesion molecule-1 receptor. These results indicate that the ability of RV to uncoat at low endosomal pH confers virion resistance to extracellular stress. The data endorse endosomal acidification inhibitors as a viable strategy against RVs, especially if inhibitors are directly applied to the airways. Importance Rhinoviruses (RVs) are the predominant agents causing the common cold. Anti-RV drugs or vaccines are not available, largely due to rapid evolutionary adaptation of RVs giving rise to resistant mutants, and an immense diversity of antigens in more than 160 different RV types. Here, we provide insight into the cell biology of RVs by harnessing the ability of RVs to evolve resistance against host-targeting small chemical compounds neutralizing endosomal pH, an important cue for uncoating of normal RVs. We show that RVs grown in cells treated with inhibitors of endo-lysosomal acidification evolved capsid mutations yielding reduced virion stability against elevated temperature, low pH and incubation with recombinant soluble receptor fragments. This fitness cost makes it unlikely that RV mutants adapted to neutral pH become prevalent in nature. The data support the concept of host-directed drug development against respiratory viruses in general, notably at low risk of gain-of-function mutations.


2021 ◽  
Author(s):  
Myungjun Ko ◽  
Monish R. Makena ◽  
Paula Schiapparelli ◽  
Paola Suarez-Meade ◽  
Allatah X. Mekile ◽  
...  

ABSTRACTA small population of self-renewing stem cells initiate tumors and maintain therapeutic resistance in glioblastoma. Given the limited treatment options and dismal prognosis for this disease there is urgent need to identify drivers of stem cells that could be druggable targets. Previous work showed that the endosomal pH regulator NHE9 is upregulated in glioblastoma and correlates with worse survival prognosis. Here, we probed for aberrant signaling pathways in patient-derived glioblastoma cells and found that NHE9 increases cell surface expression and phosphorylation of multiple receptor tyrosine kinases by promoting their escape from lysosomal degradation. Downstream of NHE9-mediated receptor activation, oncogenic signaling pathways converged on the JAK2-STAT3 transduction axis to induce pluripotency genes Oct4 and Nanog and suppress markers of glial differentiation. We used both genetic and chemical approaches to query the role of endosomal pH in glioblastoma phenotypes. Loss-of-function mutations in NHE9 that failed to alkalinize endosomal lumen did not increase self-renewal capacity of gliomaspheres in vitro. However, monensin, a chemical mimetic of Na+/H+ exchanger activity, and the H+ pump inhibitor bafilomycin bypassed NHE9 to directly alkalinize the endosomal lumen resulting in stabilization of receptor tyrosine kinases and induction of Oct4 and Nanog. Using orthotopic models of primary glioblastoma cells we found that NHE9 increased tumor initiation in vivo. We propose that NHE9 initiates inside-out signaling from the endosomal lumen, distinct from the established effects of cytoplasmic and extracellular pH on tumorigenesis. Endosomal pH may be an attractive therapeutic target that diminishes stemness in glioblastoma, agnostic of specific receptor subtype.SignificanceA well-known hallmark of cancer is excessive acidification of tumor microenvironment, caused by upregulation of Na+/H+ exchanger activity on the cancer cell membrane. However, the role of organellar pH in tumor biology has not been established. This study identifies a mechanistic link between upregulation of the endosomal Na+/H+ exchanger NHE9 and stemness properties in glioblastoma, the most malignant and common brain tumor in adults. By increasing pH of the recycling endosome, NHE9 exerts a broad effect on post-translational stability and activation of multiple receptor tyrosine kinases, leading to increased stem cell-like properties of self-renewal and tumor initiation in glioblastoma models. Our findings suggest that targeting NHE9 or endosomal pH could be an effective strategy for receptor agnostic glioblastoma treatment.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mathilde Mathieu ◽  
Nathalie Névo ◽  
Mabel Jouve ◽  
José Ignacio Valenzuela ◽  
Mathieu Maurin ◽  
...  

AbstractDespite their roles in intercellular communications, the different populations of extracellular vesicles (EVs) and their secretion mechanisms are not fully characterized: how and to what extent EVs form as intraluminal vesicles of endocytic compartments (exosomes), or at the plasma membrane (PM) (ectosomes) remains unclear. Here we follow intracellular trafficking of the EV markers CD9 and CD63 from the endoplasmic reticulum to their residency compartment, respectively PM and late endosomes. We observe transient co-localization at both places, before they finally segregate. CD9 and a mutant CD63 stabilized at the PM are more abundantly released in EVs than CD63. Thus, in HeLa cells, ectosomes are more prominent than exosomes. By comparative proteomic analysis and differential response to neutralization of endosomal pH, we identify a few surface proteins likely specific of either exosomes (LAMP1) or ectosomes (BSG, SLC3A2). Our work sets the path for molecular and functional discrimination of exosomes and small ectosomes in any cell type.


2021 ◽  
Vol 17 (7) ◽  
pp. e1009706
Author(s):  
Chaitra Prabhakara ◽  
Rashmi Godbole ◽  
Parijat Sil ◽  
Sowmya Jahnavi ◽  
Shah-e-Jahan Gulzar ◽  
...  

Many viruses utilize the host endo-lysosomal network for infection. Tracing the endocytic itinerary of SARS-CoV-2 can provide insights into viral trafficking and aid in designing new therapeutic strategies. Here, we demonstrate that the receptor binding domain (RBD) of SARS-CoV-2 spike protein is internalized via the pH-dependent CLIC/GEEC (CG) endocytic pathway in human gastric-adenocarcinoma (AGS) cells expressing undetectable levels of ACE2. Ectopic expression of ACE2 (AGS-ACE2) results in RBD traffic via both CG and clathrin-mediated endocytosis. Endosomal acidification inhibitors like BafilomycinA1 and NH4Cl, which inhibit the CG pathway, reduce the uptake of RBD and impede Spike-pseudoviral infection in both AGS and AGS-ACE2 cells. The inhibition by BafilomycinA1 was found to be distinct from Chloroquine which neither affects RBD uptake nor alters endosomal pH, yet attenuates Spike-pseudovirus entry. By screening a subset of FDA-approved inhibitors for functionality similar to BafilomycinA1, we identified Niclosamide as a SARS-CoV-2 entry inhibitor. Further validation using a clinical isolate of SARS-CoV-2 in AGS-ACE2 and Vero cells confirmed its antiviral effect. We propose that Niclosamide, and other drugs which neutralize endosomal pH as well as inhibit the endocytic uptake, could provide broader applicability in subverting infection of viruses entering host cells via a pH-dependent endocytic pathway.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3547
Author(s):  
Yangmun Bae ◽  
Yoonyoung Kim ◽  
Eun Seong Lee

In this study, we report pH-responsive metal-based biopolymer nanoparticles (NPs) for tumor-specific chemotherapy. Here, aminated hyaluronic acid (aHA) coupled with 2,3-dimethylmaleic anhydride (DMA, as a pH-responsive moiety) (aHA-DMA) was electrostatically complexed with ferrous chloride tetrahydrate (FeCl2/4H2O, as a chelating metal) and doxorubicin (DOX, as an antitumor drug model), producing DOX-loaded Fe-based hyaluronate nanoparticles (DOX@aHA-DMA/Fe NPs). Importantly, the DOX@aHA-DMA/Fe NPs improved tumor cellular uptake due to HA-mediated endocytosis for tumor cells overexpressing CD44 receptors. As a result, the average fluorescent DOX intensity observed in MDA-MB-231 cells (with CD44 receptors) was ~7.9 × 102 (DOX@HA/Fe NPs, without DMA), ~8.1 × 102 ([email protected]/Fe NPs), and ~9.3 × 102 ([email protected]/Fe NPs). Furthermore, the DOX@aHA-DMA/Fe NPs were destabilized due to ionic repulsion between Fe2+ and DMA-detached aHA (i.e., positively charged free aHA) in the acidic environment of tumor cells. This event accelerated the release of DOX from the destabilized NPs. Our results suggest that these NPs can be promising tumor-targeting drug carriers responding to acidic endosomal pH.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1465
Author(s):  
Svetlana Lukáš Petrova ◽  
Eliézer Jäger ◽  
Alessandro Jäger ◽  
Anita Höcherl ◽  
Rafał Konefał ◽  
...  

Here, we report on the construction of biodegradable poly(ethylene oxide monomethyl ether) (MPEO)-b-poly(ε-caprolactone) (PCL) nanoparticles (NPs) having acid-labile (acyclic ketal group) linkage at the block junction. In the presence of acidic pH, the nanoassemblies were destabilized as a consequence of cleaving this linkage. The amphiphilic MPEO-b-PCL diblock copolymer self-assembled in PBS solution into regular spherical NPs. The structure of self-assemble and disassemble NPs were characterized in detail by dynamic (DLS), static (SLS) light scattering, small-angle X-ray scattering (SAXS), and transmission electron microscopy (TEM). The key of the obtained NPs is using them in a paclitaxel (PTX) delivery system and study their in vitro cytostatic activity in a cancer cell model. The acid-labile ketal linker enabled the disassembly of the NPs in a buffer simulating an acidic environment in endosomal (pH ~5.0 to ~6.0) and lysosomal (pH ~4.0 to ~5.0) cell compartments resulting in the release of paclitaxel (PTX) and formation of neutral degradation products. The in vitro cytotoxicity studies showed that the activity of the drug-loaded NPs was increased compared to the free PTX. The ability of the NPs to release the drug at the endosomal pH with concomitant high cytotoxicity makes them suitable candidates as a drug delivery system for cancer therapy.


2021 ◽  
pp. 7-16

Drug resistance, inefficient cellular uptake and the subservient drug release to increase the intracellular drug concentration inside the tumor cells are the key reasons for low therapeutic efficacy of drug-loaded lipid nanoparticles in cancer therapy. Herein, we report on the design, synthesis and bioactivity evaluation of Curcumin & Paclitaxel (PTX) encapsulated endosomal pH-Sensitive lipid nanoparticles of histidinylated cationic amphiphile (16-GH; 2 in 1 system) to overcome these challenges. Findings in fluorescence resonance energy transfer (FRET) assay and in vitro drug release studies showed a controlled pH dependent fusogenic and drug release properties of the lipid nanoparticles of cationic amphiphile 16-GH respectively. Further in vitro studies revealed that Curcumin & PTX encapsulated nanoparticles of lipid 16-GH significantly inhibited proliferation of tumor cells than healthy cells. These lipid nanoparticles were further analyzed for their effect on 5-bromo-2'-deoxyuridine (BrdU) incorporation, Annexin V-FITC and cell cycle arrest (Sub-G1 phase). Further studies also confirmed that nanoparticles of lipid 16-GH containing Curcumin & PTX displayed significantly enhanced the caspase3/9 activity. Remarkably, nanoparticles of lipid 16-GH containing Curcumin & PTX are efficient in inducing apoptosis. The results in our initial mechanistic studies support the notion that the tumor cell selective cytotoxic capability of the lipid nanoparticles of the presently described endosomal pH-sensitive lipid probably instigates from depolarization of mitochondrial membrane potential and subsequent activation of caspases 3 and 9. The distinguishing feature of the currently described endosomal pH-sensitive system is that it not only efficiently delivers highly potent anti-cancer agents (Curcumin & PTX) to tumor cells, but the lipid nanoparticle drug carrier itself also contributes to inhibiting tumor cell growth. In summary, the presently described lipid nanoparticles are expected to simultaneously delivering combination of drugs to various types of tumor models.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Jiadi Lv ◽  
Zhenfeng Wang ◽  
Yajin Qu ◽  
Hua Zhu ◽  
Qiangqiang Zhu ◽  
...  

AbstractSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) invades the alveoli, where abundant alveolar macrophages (AMs) reside. How AMs respond to SARS-CoV-2 invasion remains elusive. Here, we show that classically activated M1 AMs facilitate viral spread; however, alternatively activated M2 AMs limit the spread. M1 AMs utilize cellular softness to efficiently take up SARS-CoV-2. Subsequently, the invaded viruses take over the endo-lysosomal system to escape. M1 AMs have a lower endosomal pH, favoring membrane fusion and allowing the entry of viral RNA from the endosomes into the cytoplasm, where the virus achieves replication and is packaged to be released. In contrast, M2 AMs have a higher endosomal pH but a lower lysosomal pH, thus delivering the virus to lysosomes for degradation. In hACE2 transgenic mouse model, M1 AMs are found to facilitate SARS-CoV-2 infection of the lungs. These findings provide insights into the complex roles of AMs during SARS-CoV-2 infection, along with potential therapeutic targets.


Sign in / Sign up

Export Citation Format

Share Document