scholarly journals XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure.

1996 ◽  
Vol 132 (3) ◽  
pp. 259-275 ◽  
Author(s):  
C M Clemson ◽  
J A McNeil ◽  
H F Willard ◽  
J B Lawrence

The XIST gene is implicated in X chromosome inactivation, yet the RNA contains no apparent open reading frame. An accumulation of XIST RNA is observed near its site of transcription, the inactive X chromosome (Xi). A series of molecular cytogenetic studies comparing properties of XIST RNA to other protein coding RNAs, support a critical distinction for XIST RNA; XIST does not concentrate at Xi simply because it is transcribed and processed there. Most notably, morphometric and 3-D analysis reveals that XIST RNA and Xi are coincident in 2- and 3-D space; hence, the XIST RNA essentially paints Xi. Several results indicate that the XIST RNA accumulation has two components, a minor one associated with transcription and processing, and a spliced major component, which stably associates with Xi. Upon transcriptional inhibition the major spliced component remains in the nucleus and often encircles the extra-prominent heterochromatic Barr body. The continually transcribed XIST gene and its polyadenylated RNA consistently localize to a nuclear region devoid of splicing factor/poly A RNA rich domains. XIST RNA remains with the nuclear matrix fraction after removal of chromosomal DNA. XIST RNA is released from its association with Xi during mitosis, but shows a unique highly particulate distribution. Collective results indicate that XIST RNA may be an architectural element of the interphase chromosome territory, possibly a component of nonchromatin nuclear structure that specifically associates with Xi. XIST RNA is a novel nuclear RNA which potentially provides a specific precedent for RNA involvement in nuclear structure and cis-limited gene regulation via higher-order chromatin packaging.

2017 ◽  
Vol 31 (9) ◽  
pp. 876-888 ◽  
Author(s):  
Rebeca Ridings-Figueroa ◽  
Emma R. Stewart ◽  
Tatyana B. Nesterova ◽  
Heather Coker ◽  
Greta Pintacuda ◽  
...  

2017 ◽  
Vol 114 (40) ◽  
pp. 10654-10659 ◽  
Author(s):  
Hongjae Sunwoo ◽  
David Colognori ◽  
John E. Froberg ◽  
Yesu Jeon ◽  
Jeannie T. Lee

X chromosome inactivation is an epigenetic dosage compensation mechanism in female mammals driven by the long noncoding RNA, Xist. Although recent genomic and proteomic approaches have provided a more global view of Xist’s function, how Xist RNA localizes to the inactive X chromosome (Xi) and spreads in cis remains unclear. Here, we report that the CDKN1-interacting zinc finger protein CIZ1 is critical for localization of Xist RNA to the Xi chromosome territory. Stochastic optical reconstruction microscopy (STORM) shows a tight association of CIZ1 with Xist RNA at the single-molecule level. CIZ1 interacts with a specific region within Xist exon 7–namely, the highly repetitive Repeat E motif. Using genetic analysis, we show that loss of CIZ1 or deletion of Repeat E in female cells phenocopies one another in causing Xist RNA to delocalize from the Xi and disperse into the nucleoplasm. Interestingly, this interaction is exquisitely sensitive to CIZ1 levels, as overexpression of CIZ1 likewise results in Xist delocalization. As a consequence, this delocalization is accompanied by a decrease in H3K27me3 on the Xi. Our data reveal that CIZ1 plays a major role in ensuring stable association of Xist RNA within the Xi territory.


2019 ◽  
Vol 18 (2) ◽  
pp. 21-26
Author(s):  
E. A. Shestakova ◽  
T. A. Bogush

Introduction . Inactive X chromosome (Xi) is associated with noncoding XIST RNA, series of proteins and contains multiple epigenetic modifications that altogether determine a silence of the most of X-linked genes. Recently the data were obtained that tumor suppressor BRCA1 is also associated with Xi. The purpose of this study was to reveal the colocalization of BRCA1 and XIST RNA and precise spatial organization on Xi with the high resolution of confocal microscopy.Materials and methods . The object of the study is IMR90hTERT diploid immortalized fibroblast cell line. For BRCA1 and XIST RNA colocalization analysis on Xi the method of fluorescent hybridization in situ associated with immunofluorescent cell staining (immunoFISH) and confocal microscopy were used. For BRCA1 and heterochromatin protein-1 colocalization study the method of double immunofluorescent staining and common fluorescent microscopy were applied. Results . The study using confocal fluorescent microscopy with higher resolution has demonstrated at first the colocalization of BRCA1 with XIST RNA region of Xi revealed with XIST RNA probes and with replicating Xi and autosomes revealed with BrdU in late S-phase of cell cycle. Altogether, the data obtained suggest the involvement of BRCA1 in the inhibition of gene expression on Xi due to the regulation of XIST RNA association with Xi. Moreover, according to the results of confocal microscopy, BRCA1 also colocalizes with replicating Xi and autosomes revealed with BrdU in late S-phase of cell cycle. This indicates a possible involvement of this protein in the replication of pericentromeric repeats in cellular chromosomes. Colocalization of BRCA1 with heterochromatin protein-1α presented in pericentromeric regions of all chromosomes supports this suggestion.Conclusions . Altogether, the data obtained in this study suggest the involvement of BRCA1 in the inhibition of gene expression on Xi due to the association with noncoding inhibiting XIST RNA and in replication of heterochromatin regions. 


2017 ◽  
Vol 372 (1733) ◽  
pp. 20160368 ◽  
Author(s):  
Asun Monfort ◽  
Anton Wutz

The Xist gene produces a long noncoding RNA that initiates chromosome-wide gene repression on the inactive X chromosome in female mammals. Recent progress has advanced the understanding of Xist function at the molecular level. This review provides an overview of insights from genetic approaches and puts the new data in the context of an emerging mechanistic model as well as the existing literature. Some consideration is given on how independent biochemical studies on X inactivation help to advance on the wider question of chromatin regulation in the mammalian dosage compensation system. This article is part of the themed issue ‘X-chromosome inactivation: a tribute to Mary Lyon’.


1999 ◽  
Vol 10 (6) ◽  
pp. 606-610 ◽  
Author(s):  
Yoshio Endo ◽  
Takuya Watanabe ◽  
Yukio Mishima ◽  
Akira Yoshimura ◽  
Nobuo Takagi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document