scholarly journals Characterization of Tbc2, a nucleus-encoded factor specifically required for translation of the chloroplast psbC mRNA in Chlamydomonas reinhardtii

2002 ◽  
Vol 157 (6) ◽  
pp. 953-962 ◽  
Author(s):  
Andrea H. Auchincloss ◽  
William Zerges ◽  
Karl Perron ◽  
Jacqueline Girard-Bascou ◽  
Jean-David Rochaix

Genetic analysis has revealed that the three nucleus-encoded factors Tbc1, Tbc2, and Tbc3 are involved in the translation of the chloroplast psbC mRNA of the eukaryotic green alga Chlamydomonas reinhardtii. In this study we report the isolation and phenotypic characterization of two new tbc2 mutant alleles and their use for cloning and characterizing the Tbc2 gene by genomic complementation. TBC2 encodes a protein of 1,115 residues containing nine copies of a novel degenerate 38–40 amino acid repeat with a quasiconserved PPPEW motif near its COOH-terminal end. The middle part of the Tbc2 protein displays partial amino acid sequence identity with Crp1, a protein from Zea mays that is implicated in the processing and translation of the chloroplast petA and petD RNAs. The Tbc2 protein is enriched in chloroplast stromal subfractions and is associated with a 400-kD protein complex that appears to play a role in the translation of specifically the psbC mRNA.

Biologia ◽  
2011 ◽  
Vol 66 (1) ◽  
Author(s):  
Dessy Natalia ◽  
Keni Vidilaseris ◽  
Pasjan Satrimafitrah ◽  
Wangsa Ismaya ◽  
Purkan ◽  
...  

AbstractGlucoamylase from the yeast Saccharomycopsis fibuligera R64 (GLL1) has successfully been purified and characterized. The molecular mass of the enzyme was 56,583 Da as determined by mass spectrometry. The purified enzyme demonstrated optimum activity in the pH range of 5.6–6.4 and at 50°C. The activity of the enzyme was inhibited by acarbose with the IC50 value of 5 μM. GLL1 shares high amino acid sequence identity with GLU1 and GLA1, which are Saccharomycopsis fibuligera glucoamylases from the strains HUT7212 and KZ, respectively. The properties of GLL1, however, resemble that of GLU1. The elucidation of the primary structure of GLL1 contributes to the explanation of this finding.


2001 ◽  
Vol 45 (2) ◽  
pp. 616-620 ◽  
Author(s):  
Antonio Oliver ◽  
José Claudio Pérez-Dı́az ◽  
Teresa M. Coque ◽  
Fernando Baquero ◽  
Rafael Cantón

ABSTRACT A cefotaxime-resistant, ceftazidime-susceptible Escherichia coli isolate was obtained from a patient with sepsis in 1997, from which a β-lactamase with a pI of 8.1 was cloned. Cephaloridine and cefotaxime relative hydrolysis rates were 167 and 81, respectively (penicillin G rate = 100), whereas ceftazidime hydrolysis was not detected. The nucleotide sequence revealed a bla gene related to that coding for CTX-M-3. Despite 21 nucleotide substitutions, only 2 determined amino acid changes (Ala27Val and Arg38Gln). The amino acid sequence identity between this enzyme, designated CTX-M-10, and the chromosomal β-lactamase ofKluyvera ascorbata was 81%.


2018 ◽  
Vol 62 (10) ◽  
Author(s):  
L. Dabos ◽  
A. B. Jousset ◽  
R. A. Bonnin ◽  
N. Fortineau ◽  
A. Zavala ◽  
...  

ABSTRACT OXA-535 is a chromosome-encoded carbapenemase of Shewanella bicestrii JAB-1 that shares only 91.3% amino acid sequence identity with OXA-48. Catalytic efficiencies are similar to those of OXA-48 for most β-lactams, except for ertapenem, where a 2,000-fold-higher efficiency was observed with OXA-535. OXA-535 and OXA-436, a plasmid-encoded variant of OXA-535 differing by three amino acids, form a novel cluster of distantly related OXA-48-like carbapenemases. Comparison of blaOXA-535 and blaOXA-436 genetic environments suggests that an ISCR1 may be responsible for blaOXA-436 gene mobilization from the chromosome of Shewanella spp. to plasmids.


1999 ◽  
Vol 10 (1) ◽  
pp. 119-134 ◽  
Author(s):  
Siew Heng Wong ◽  
Yue Xu ◽  
Tao Zhang ◽  
Gareth Griffiths ◽  
Stephen Loucian Lowe ◽  
...  

Syntaxin 1, synaptobrevins or vesicle-associated membrane proteins, and the synaptosome-associated protein of 25 kDa (SNAP-25) are key molecules involved in the docking and fusion of synaptic vesicles with the presynaptic membrane. We report here the molecular, cell biological, and biochemical characterization of a 32-kDa protein homologous to both SNAP-25 (20% amino acid sequence identity) and the recently identified SNAP-23 (19% amino acid sequence identity). Northern blot analysis shows that the mRNA for this protein is widely expressed. Polyclonal antibodies against this protein detect a 32-kDa protein present in both cytosol and membrane fractions. The membrane-bound form of this protein is revealed to be primarily localized to the Golgi apparatus by indirect immunofluorescence microscopy, a finding that is further established by electron microscopy immunogold labeling showing that this protein is present in tubular-vesicular structures of the Golgi apparatus. Biochemical characterizations establish that this protein behaves like a SNAP receptor and is thus named Golgi SNARE of 32 kDa (GS32). GS32 in the Golgi extract is preferentially retained by the immobilized GST–syntaxin 6 fusion protein. The coimmunoprecipitation of syntaxin 6 but not syntaxin 5 or GS28 from the Golgi extract by antibodies against GS32 further sustains the preferential interaction of GS32 with Golgi syntaxin 6.


2011 ◽  
Vol 77 (19) ◽  
pp. 7077-7079 ◽  
Author(s):  
Li Liao ◽  
Xue-Wei Xu ◽  
Xia-Wei Jiang ◽  
Yi Cao ◽  
Na Yi ◽  
...  

ABSTRACTA new agarase, AgaACN41, cloned fromVibriosp. strain CN41, consists of 990 amino acids, with only 49% amino acid sequence identity with known β-agarases. AgaACN41belongs to the GH50 (glycoside hydrolase 50) family but yields neoagarotetraose as the end product. AgaACN41was expressed and characterized.


1998 ◽  
Vol 62 (3) ◽  
pp. 807-813 ◽  
Author(s):  
N. Crickmore ◽  
D. R. Zeigler ◽  
J. Feitelson ◽  
E. Schnepf ◽  
J. Van Rie ◽  
...  

SUMMARY The crystal proteins of Bacillus thuringiensis have been extensively studied because of their pesticidal properties and their high natural levels of production. The increasingly rapid characterization of new crystal protein genes, triggered by an effort to discover proteins with new pesticidal properties, has resulted in a variety of sequences and activities that no longer fit the original nomenclature system proposed in 1989. Bacillus thuringiensis pesticidal crystal protein (Cry and Cyt) nomenclature was initially based on insecticidal activity for the primary ranking criterion. Many exceptions to this systematic arrangement have become apparent, however, making the nomenclature system inconsistent. Additionally, the original nomenclature, with four activity-based primary ranks for 13 genes, did not anticipate the current 73 holotype sequences that form many more than the original four subgroups. A new nomenclature, based on hierarchical clustering using amino acid sequence identity, is proposed. Roman numerals have been exchanged for Arabic numerals in the primary rank (e.g., Cry1Aa) to better accommodate the large number of expected new sequences. In this proposal, 133 crystal proteins comprising 24 primary ranks are systematically arranged.


Plant Disease ◽  
2000 ◽  
Vol 84 (7) ◽  
pp. 739-742 ◽  
Author(s):  
M. A. V. Alexandre ◽  
L. M. L. Duarte ◽  
E. B. Rivas ◽  
C. M. Chagas ◽  
M. M. Barradas ◽  
...  

Petunia plants from a nursery in the State of Rio Grande do Sul, Brazil, showed pronounced vein banding and contained isometric particles with diameters of approximately 45 and 30 nm. The larger ones apparently represent a caulimovirus, while the smaller ones, which included both empty shells and full particles, were identified as those of a new tymovirus for which we propose the name Petunia vein banding virus (PetVBV). Originally, PetVBV was transmitted only with difficulty to healthy petunia plants. However, from an experimentally infected petu-nia, it was later readily transmitted also to Nicotiana benthamiana and Nicandra physalodes, but not to other species in the Solanaceae or other plant families. It produces cytopathic effects typical for tymovirus infections. Its coat protein shows approximately 65% amino acid sequence identity with those of Eggplant mosaic and Andean potato latent viruses, to which it is also serologically more closely related than to any other tymoviruses.


1995 ◽  
Vol 36 (3) ◽  
pp. 505-510 ◽  
Author(s):  
Yukimoto Iwasaki ◽  
Masayasu Komano ◽  
Atsushi Ishikawa ◽  
Takuji Sasaki ◽  
Tadashi Asahi

2019 ◽  
Vol 85 (18) ◽  
Author(s):  
Wei Lu ◽  
Jinhui Feng ◽  
Xi Chen ◽  
Yun-Juan Bao ◽  
Yu Wang ◽  
...  

ABSTRACT In this study, we identified two P450 enzymes (CYP5150AP3 and CYP5150AN1) from Thanatephorus cucumeris NBRC 6298 by combination of transcriptome sequencing and heterologous expression in Pichia pastoris. The biotransformation of 11-deoxycortisol and testosterone by Pichia pastoris whole cells coexpressing the cyp5150ap3 and por genes demonstrated that the CYP5150AP3 enzyme possessed steroidal 7β-hydroxylase activities toward these substrates, and the regioselectivity was dependent on the structures of steroidal compounds. CYP5150AN1 catalyzed the 2β-hydroxylation of 11-deoxycortisol. It is interesting that they display different regioselectivity of hydroxylation from that of their isoenzyme, CYP5150AP2, which possesses 19- and 11β-hydroxylase activities. IMPORTANCE The steroidal hydroxylases CYP5150AP3 and CYP5150AN1 together with the previously characterized CYP5150AP2 belong to the CYP5150A family of P450 enzymes with high amino acid sequence identity, but they showed completely different regioselectivities toward 11-deoxycortisol, suggesting the regioselectivity diversity of steroidal hydroxylases of CYP5150 family. They are also distinct from the known bacterial and fungal steroidal hydroxylases in substrate specificity and regioselectivity. Biocatalytic hydroxylation is one of the important transformations for the functionalization of steroid nucleus rings but remains a very challenging task in organic synthesis. These hydroxylases are useful additions to the toolbox of hydroxylase enzymes for the functionalization of steroids at various positions.


Sign in / Sign up

Export Citation Format

Share Document