scholarly journals GS32, a Novel Golgi SNARE of 32 kDa, Interacts Preferentially with Syntaxin 6

1999 ◽  
Vol 10 (1) ◽  
pp. 119-134 ◽  
Author(s):  
Siew Heng Wong ◽  
Yue Xu ◽  
Tao Zhang ◽  
Gareth Griffiths ◽  
Stephen Loucian Lowe ◽  
...  

Syntaxin 1, synaptobrevins or vesicle-associated membrane proteins, and the synaptosome-associated protein of 25 kDa (SNAP-25) are key molecules involved in the docking and fusion of synaptic vesicles with the presynaptic membrane. We report here the molecular, cell biological, and biochemical characterization of a 32-kDa protein homologous to both SNAP-25 (20% amino acid sequence identity) and the recently identified SNAP-23 (19% amino acid sequence identity). Northern blot analysis shows that the mRNA for this protein is widely expressed. Polyclonal antibodies against this protein detect a 32-kDa protein present in both cytosol and membrane fractions. The membrane-bound form of this protein is revealed to be primarily localized to the Golgi apparatus by indirect immunofluorescence microscopy, a finding that is further established by electron microscopy immunogold labeling showing that this protein is present in tubular-vesicular structures of the Golgi apparatus. Biochemical characterizations establish that this protein behaves like a SNAP receptor and is thus named Golgi SNARE of 32 kDa (GS32). GS32 in the Golgi extract is preferentially retained by the immobilized GST–syntaxin 6 fusion protein. The coimmunoprecipitation of syntaxin 6 but not syntaxin 5 or GS28 from the Golgi extract by antibodies against GS32 further sustains the preferential interaction of GS32 with Golgi syntaxin 6.

2018 ◽  
Vol 62 (10) ◽  
Author(s):  
L. Dabos ◽  
A. B. Jousset ◽  
R. A. Bonnin ◽  
N. Fortineau ◽  
A. Zavala ◽  
...  

ABSTRACT OXA-535 is a chromosome-encoded carbapenemase of Shewanella bicestrii JAB-1 that shares only 91.3% amino acid sequence identity with OXA-48. Catalytic efficiencies are similar to those of OXA-48 for most β-lactams, except for ertapenem, where a 2,000-fold-higher efficiency was observed with OXA-535. OXA-535 and OXA-436, a plasmid-encoded variant of OXA-535 differing by three amino acids, form a novel cluster of distantly related OXA-48-like carbapenemases. Comparison of blaOXA-535 and blaOXA-436 genetic environments suggests that an ISCR1 may be responsible for blaOXA-436 gene mobilization from the chromosome of Shewanella spp. to plasmids.


Biologia ◽  
2011 ◽  
Vol 66 (1) ◽  
Author(s):  
Dessy Natalia ◽  
Keni Vidilaseris ◽  
Pasjan Satrimafitrah ◽  
Wangsa Ismaya ◽  
Purkan ◽  
...  

AbstractGlucoamylase from the yeast Saccharomycopsis fibuligera R64 (GLL1) has successfully been purified and characterized. The molecular mass of the enzyme was 56,583 Da as determined by mass spectrometry. The purified enzyme demonstrated optimum activity in the pH range of 5.6–6.4 and at 50°C. The activity of the enzyme was inhibited by acarbose with the IC50 value of 5 μM. GLL1 shares high amino acid sequence identity with GLU1 and GLA1, which are Saccharomycopsis fibuligera glucoamylases from the strains HUT7212 and KZ, respectively. The properties of GLL1, however, resemble that of GLU1. The elucidation of the primary structure of GLL1 contributes to the explanation of this finding.


1982 ◽  
Vol 156 (2) ◽  
pp. 550-566 ◽  
Author(s):  
S M Goyert ◽  
J E Shively ◽  
J Silver

In mice, two families of structurally distinct Ia molecules, one designated I-A and the other I-E, have been identified and characterized. The HLA-DR molecules represent one family of human Ia molecules equivalent to the murine I-E molecules on the basis of amino acid sequence homology. We describe the isolation and biochemical characterization of a second family of human Ia molecules, designated HLA-DS for second D-region locus, equivalent to the murine I-A molecules. The human HLA-DS molecules consist of two polypeptide chains, DS alpha (37,000 mol wt) and DS beta (29,000 mol wt), with 73% amino acid sequence identity to the murine I-A molecules. Furthermore, the HLA-DS molecules are closely linked genetically to HLA-DR molecules, a situation analogous to that observed in mice. The similarity in molecular weights of the DR and DS molecules might explain why others have failed to identify the latter in man.


2011 ◽  
Vol 77 (19) ◽  
pp. 7077-7079 ◽  
Author(s):  
Li Liao ◽  
Xue-Wei Xu ◽  
Xia-Wei Jiang ◽  
Yi Cao ◽  
Na Yi ◽  
...  

ABSTRACTA new agarase, AgaACN41, cloned fromVibriosp. strain CN41, consists of 990 amino acids, with only 49% amino acid sequence identity with known β-agarases. AgaACN41belongs to the GH50 (glycoside hydrolase 50) family but yields neoagarotetraose as the end product. AgaACN41was expressed and characterized.


2001 ◽  
Vol 45 (2) ◽  
pp. 616-620 ◽  
Author(s):  
Antonio Oliver ◽  
José Claudio Pérez-Dı́az ◽  
Teresa M. Coque ◽  
Fernando Baquero ◽  
Rafael Cantón

ABSTRACT A cefotaxime-resistant, ceftazidime-susceptible Escherichia coli isolate was obtained from a patient with sepsis in 1997, from which a β-lactamase with a pI of 8.1 was cloned. Cephaloridine and cefotaxime relative hydrolysis rates were 167 and 81, respectively (penicillin G rate = 100), whereas ceftazidime hydrolysis was not detected. The nucleotide sequence revealed a bla gene related to that coding for CTX-M-3. Despite 21 nucleotide substitutions, only 2 determined amino acid changes (Ala27Val and Arg38Gln). The amino acid sequence identity between this enzyme, designated CTX-M-10, and the chromosomal β-lactamase ofKluyvera ascorbata was 81%.


Zygote ◽  
2002 ◽  
Vol 10 (4) ◽  
pp. 291-299 ◽  
Author(s):  
Christine A. Swann ◽  
Rory M. Hope ◽  
William G. Breed

This comparative study of the cDNA sequence of the zona pellucida C (ZPC) glycoprotein in murid rodents focuses on the nucleotide and amino acid sequence of the putative sperm-combining site. We ask the question: Has divergence evolved in the nucleotide sequence of ZPC in the murid rodents of Australia? Using RT-PCR and (RACE) PCR, the complete cDNA coding region of ZPC in the Australian hydromyine rodents Notomys alexis and Pseudomys australis, and a partial cDNA sequence from a third hydromyine rodent, Hydromys chrysogaster, has been determined. Comparison between the cDNA sequences of the hydromyine rodents reveals that the level of amino acid sequence identity between N. alexis and P. australis is 96%, whereas that between the two species of hydromyine rodents and M. musculus and R. norvegicus is 88% and 87% respectively. Despite being reproductively isolated from each other, the three species of hydromyine rodents have a 100% level of amino acid sequence identity at the putative sperm-combining site. This finding does not support the view that this site is under positive selective pressure. The sequence data obtained in this study may have important conservation implications for the dissemination of immunocontraception directed against M. musculus using ZPC antibodies.


2005 ◽  
Vol 52 (4) ◽  
pp. 857-862 ◽  
Author(s):  
Lina Liu ◽  
Shicui Zhang ◽  
Zhenhui Liu ◽  
Hongyan Li ◽  
Mei Liu ◽  
...  

The complete cDNA and deduced amino-acid sequences of ribosomal proteins L34 (AmphiL34) and S29 (AmphiS29) from the amphioxus Branchiostoma belcheri tsingtauense were identified in this study. The AmphiL34 cDNA is 435 nucleotides in length and encodes a 118 amino-acid protein with calculated molecular mass of 13.6 kDa. It shares 53.6-67.5% amino-acid sequence identity with its eukaryotic counterparts including human, mouse, rat, pig, frog, catfish, fruit fly, mosquito, armyworm, nematode and yeast. The AmphiS29 cDNA comprises 453 nucleotides and codes for a 56 amino-acid protein with a calculated molecular mass of 6.6 kDa. It shows 66.1-78.6% amino-acid sequence identity to eukaryotic S29 proteins from human, mouse, rat, pig, zebrafish, seahorse, fruit fly, nematode, sea hare and yeast. AmphiL34 contains a putative nucleolar localization signal, while AmphiS29 has a zinc finger-like domain. A phylogenetic tree deduced from the conserved sequences of AmphiL34 and AmphiS29 and other known counterparts indicates that the positions of AmphiL34/AmphiS29 are intermediate between the vertebrate and invertebrate L34/S29. Southern blot analysis demonstrates the presence of one copy of the L34 gene and 2-3 copies of the S29 gene in the genome of the amphioxus B. belcheri tsingtauense. This is in sharp contrast to the existence of 7-9 copies of the L34 gene and 14-17 copies of the S29 gene in the rat genome. These date suggest that housekeeping genes like AmphiL34 and AmphiS29 have undergone large-scale duplication in the chordate lineage.


Plant Disease ◽  
2006 ◽  
Vol 90 (1) ◽  
pp. 112-112 ◽  
Author(s):  
N. Borodynko ◽  
B. Hasiów ◽  
H. Pospieszny

Beet necrotic yellow vein virus (BNYVV), the casual agent of rhizomania disease, was identified in sugar beet plants from several fields in the Wielkopolska Region of Poland (1). In greenhouse studies, sugar beets were grown in the soil from one of these fields to bait soilborne viruses. Of 200 sugar beet plants, three developed symptoms of vein clearing, vein banding, and mosaic. Crude sap from symptomatic plants was used for mechanical inoculation of various plants species. In Chenopodium quinoa, C. amaranticolor, and Tetragonia expansa only local lesions were observed. Electron microscope examination of negatively stained leaf-dip preparations from symptomatic sugar beet plants showed a mixture of rod-shape particles from 70 to 400 nm long. Using double-antibody sandwich enzyme-linked immunosorbent assay tests, two symptomatic sugar beet plants gave positive reactions with antiserum against BNYVV (Bio-Rad, Hercules, CA) and a third plant gave a positive reaction with antisera against BNYVV and Beet soilborne virus (BSBV). Total RNA was extracted from roots and leaves of the symptomatic plants and used in a multiplex reverse transcription-polymerase chain reaction (mRT-PCR) assay. Specific primers were designed to amplify a fragment of the RNA1 for BSBV and RNA2 for BNYVV and Beet virus Q (BVQ) (2). Two mRT-PCR products amplified with the primers specific to BNYVV and BSBV were obtained and sequenced. A 274-nt amplicon sequence (GenBank Accession No. DQ012156) had 98% nucleotide sequence identity with the German BNYVV isolate F75 (GenBank Accession No. AF19754) and a 376-nt amplicon sequence (GenBank Accession No. AY999690) had 98% nucleotide and 98% amino acid sequence identity with the German BSBV isolate (GenBank Accession No. Z97873). The Polish BSBV isolate had 88% nucleotide and 62% amino acid sequence identity with BVQ, another pomovirus (GenBank Accession No. AJ 223596 formerly known as serotype Wierthe of BSBV (2). In 2005, mRT-PCR was used on samples collected from two fields of the Wielkopolska Region. Of 15 tested sugar beet plants, 12 gave positive reactions with primers specific for BSBV and nine with primers specific to BNYVV. To our knowledge, this is first report of BSBV in Poland. In Europe, BSBV was previously reported in England, the Netherlands, Belgium, Sweden, Germany, France, and Finland (2,3). References: (1) M. Jezewska and J. Piszczek. Phytopathol. Polonica, 21:165, 2001. (2) A. Maunier et al. Appl. Environ. Microbiol. 69:2356, 2003. (3) C. M. Rush and G. B. Heidel. Plant Dis. 79:868, 1995.


2018 ◽  
Vol 85 (3) ◽  
Author(s):  
Laura L. Lee ◽  
William S. Hart ◽  
Vladimir V. Lunin ◽  
Markus Alahuhta ◽  
Yannick J. Bomble ◽  
...  

ABSTRACT Genomes of extremely thermophilic Caldicellulosiruptor species encode novel cellulose binding proteins, called tāpirins, located proximate to the type IV pilus locus. The C-terminal domain of Caldicellulosiruptor kronotskyensis tāpirin 0844 (Calkro_0844) is structurally unique and has a cellulose binding affinity akin to that seen with family 3 carbohydrate binding modules (CBM3s). Here, full-length and C-terminal versions of tāpirins from Caldicellulosiruptor bescii (Athe_1870), Caldicellulosiruptor hydrothermalis (Calhy_0908), Caldicellulosiruptor kristjanssonii (Calkr_0826), and Caldicellulosiruptor naganoensis (NA10_0869) were produced recombinantly in Escherichia coli and compared to Calkro_0844. All five tāpirins bound to microcrystalline cellulose, switchgrass, poplar, and filter paper but not to xylan. Densitometry analysis of bound protein fractions visualized by SDS-PAGE revealed that Calhy_0908 and Calkr_0826 (from weakly cellulolytic species) associated with the cellulose substrates to a greater extent than Athe_1870, Calkro_0844, and NA10_0869 (from strongly cellulolytic species). Perhaps this relates to their specific needs to capture glucans released from lignocellulose by cellulases produced in Caldicellulosiruptor communities. Calkro_0844 and NA10_0869 share a higher degree of amino acid sequence identity (>80% identity) with each other than either does with Athe_1870 (∼50%). The levels of amino acid sequence identity of Calhy_0908 and Calkr_0826 to Calkro_0844 were only 16% and 36%, respectively, although the three-dimensional structures of their C-terminal binding regions were closely related. Unlike the parent strain, C. bescii mutants lacking the tāpirin genes did not bind to cellulose following short-term incubation, suggesting a role in cell association with plant biomass. Given the scarcity of carbohydrates in neutral terrestrial hot springs, tāpirins likely help scavenge carbohydrates from lignocellulose to support growth and survival of Caldicellulosiruptor species. IMPORTANCE The mechanisms by which microorganisms attach to and degrade lignocellulose are important to understand if effective approaches for conversion of plant biomass into fuels and chemicals are to be developed. Caldicellulosiruptor species grow on carbohydrates from lignocellulose at elevated temperatures and have biotechnological significance for that reason. Novel cellulose binding proteins, called tāpirins, are involved in the way that Caldicellulosiruptor species interact with microcrystalline cellulose, and additional information about the diversity of these proteins across the genus, including binding affinity and three-dimensional structural comparisons, is provided here.


Sign in / Sign up

Export Citation Format

Share Document