scholarly journals Local ERM activation and dynamic growth cones at Schwann cell tips implicated in efficient formation of nodes of Ranvier

2003 ◽  
Vol 162 (3) ◽  
pp. 489-498 ◽  
Author(s):  
Cheryl L. Gatto ◽  
Barbara J. Walker ◽  
Stephen Lambert

Nodes of Ranvier are specialized, highly polarized axonal domains crucial to the propagation of saltatory action potentials. In the peripheral nervous system, axo–glial cell contacts have been implicated in Schwann cell (SC) differentiation and formation of the nodes of Ranvier. SC microvilli establish axonal contact at mature nodes, and their components have been observed to localize early to sites of developing nodes. However, a role for these contacts in node formation remains controversial. Using a myelinating explant culture system, we have observed that SCs reorganize and polarize microvillar components, such as the ezrin-binding phosphoprotein 50 kD/regulatory cofactor of the sodium-hydrogen exchanger isoform 3 (NHERF-1), actin, and the activated ezrin, radixin, and moesin family proteins before myelination in response to inductive signals. These components are targeted to the SC distal tips where live cell imaging reveals novel, dynamic growth cone–like behavior. Furthermore, localized activation of the Rho signaling pathway at SC tips gives rise to these microvillar component–enriched “caps” and influences the efficiency of node formation.

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Yevgeniya A Mironova ◽  
Guy M Lenk ◽  
Jing-Ping Lin ◽  
Seung Joon Lee ◽  
Jeffery L Twiss ◽  
...  

Proper development of the CNS axon-glia unit requires bi-directional communication between axons and oligodendrocytes (OLs). We show that the signaling lipid phosphatidylinositol-3,5-bisphosphate [PI(3,5)P2] is required in neurons and in OLs for normal CNS myelination. In mice, mutations of Fig4, Pikfyve or Vac14, encoding key components of the PI(3,5)P2 biosynthetic complex, each lead to impaired OL maturation, severe CNS hypomyelination and delayed propagation of compound action potentials. Primary OLs deficient in Fig4 accumulate large LAMP1+ and Rab7+ vesicular structures and exhibit reduced membrane sheet expansion. PI(3,5)P2 deficiency leads to accumulation of myelin-associated glycoprotein (MAG) in LAMP1+perinuclear vesicles that fail to migrate to the nascent myelin sheet. Live-cell imaging of OLs after genetic or pharmacological inhibition of PI(3,5)P2 synthesis revealed impaired trafficking of plasma membrane-derived MAG through the endolysosomal system in primary cells and brain tissue. Collectively, our studies identify PI(3,5)P2 as a key regulator of myelin membrane trafficking and myelinogenesis.


2021 ◽  
Author(s):  
Nicole Mertes ◽  
Marvin Busch ◽  
Magnus-Carsten Huppertz ◽  
Christina Nicole Hacker ◽  
Clara-Marie Guerth ◽  
...  

We introduce a family of bright, rhodamine-based calcium indicators with tuneable affinities and colors. The indicators can be specifically localized to different cellular compartments and are compatible with both fluorescence and bioluminescence readouts through conjugation to HaloTag fusion proteins. Importantly, their increase in fluorescence upon localization enables no-wash live-cell imaging, which greatly facilitates their use in biological assays. Applications as fluorescent indicators in rat hippocampal neurons include the detection of single action potentials and of calcium fluxes in the endoplasmic reticulum (ER). Applications as bioluminescent indicators include the recording of the pharmacological modulation of nuclear calcium in high-throughput-compatible assays. The versatility and remarkable ease of use of these indicators make them powerful tools for bioimaging and bioassays.


Sign in / Sign up

Export Citation Format

Share Document