cns myelination
Recently Published Documents


TOTAL DOCUMENTS

122
(FIVE YEARS 28)

H-INDEX

33
(FIVE YEARS 4)

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 639-640
Author(s):  
Ramalakshmi Ramasamy ◽  
Cara Hardy ◽  
Stephen Crocker ◽  
Phillip Smith

Abstract Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS). Of note, over 80% of MS patients have urinary symptoms as one of their earliest symptoms. Since MS patients often live into older age, urinary incontinence and retention are significant problems affecting their quality of life. Although several studies show that inflammatory-demyelinating animal models of MS develop bladder dysfunction, the confounding influence of systemic inflammation in these models limits potential interpretation on the contribution of CNS-myelination to bladder dysfunction. We sought to address this knowledge gap using the cuprizone model of demyelination and remyelination. C57Bl/6 mice were treated with dietary cuprizone (0.2%w/w) for four weeks to induce demyelination. One group was allowed four additional weeks for recovery and remyelination. We performed voiding spot assay (VSA), urethane-anesthetized cystometry, and CNS-histology to assess demyelination-induced differences in urinary performance. We observed that cortical demyelination causes significant aberrance in voiding behavior (conscious cortical control) characterized by increased micturition frequency and reduced volume per micturition. Interestingly, remyelination restored healthy bladder function. However, there were no significant changes in the cystometric parameters (brainstem reflex) between the treatment groups. While MS is not classically considered a disease of aging, extending the longevity of these patients has not been reciprocated with improved treatments for their most-bothersome conditions, notably urinary symptoms that persist throughout life. Our data represent a novel compelling connection and strong correlation between CNS-myelination and cortical control of bladder function, which has potential implications in MS, aging, and aging-associated neurological disorders.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Curtis M. Hay ◽  
Stacey Jackson ◽  
Stanislaw Mitew ◽  
Daniel J. Scott ◽  
Matthias Koenning ◽  
...  

Abstract Background Myelination is a highly regulated process in the vertebrate central nervous system (CNS) whereby oligodendrocytes wrap axons with multiple layers of insulating myelin in order to allow rapid electrical conduction. Establishing the proper pattern of myelin in neural circuits requires communicative axo-glial interactions, however, the molecular interactions that occur between oligodendrocytes and axons during developmental myelination and myelin maintenance remain to be fully elucidated. Our previous work identified G protein-coupled receptor 62 (Gpr62), an uncharacterized orphan g-protein coupled receptor, as being selectively expressed by mature oligodendrocytes within the CNS, suggesting a potential role in myelination or axoglial interactions. However, no studies to date have assessed the functional requirement for Gpr62 in oligodendrocyte development or CNS myelination. Methods To address this, we generated a knockout mouse strain lacking the Gpr62 gene. We assessed CNS myelination during both postnatal development and adulthood using immunohistochemistry, electron microscopy and western blot. In addition, we utilized AAV-mediated expression of a tagged Gpr62 in oligodendrocytes to determine the subcellular localization of the protein in vivo. Results We find that virally expressed Gpr62 protein is selectively expressed on the adaxonal myelin layer, suggestive of a potential role for Gpr62 in axo-myelinic signaling. Nevertheless, Gpr62 knockout mice display normal oligodendrocyte numbers and apparently normal myelination within the CNS during both postnatal development and adulthood. Conclusions We conclude that in spite of being well-placed to mediate neuronal-oligodendrocyte communications, Gpr62 is overall dispensable for CNS myelination.


Cell Reports ◽  
2021 ◽  
Vol 37 (1) ◽  
pp. 109695
Author(s):  
Yan Wang ◽  
Yanhong Zhang ◽  
Sheng Zhang ◽  
Bokyung Kim ◽  
Vanessa L. Hull ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Dhananjay Yellajoshyula ◽  
Abigail E Rogers ◽  
Audrey J Kim ◽  
Sumin Kim ◽  
Samuel S Pappas ◽  
...  

Dystonia is a disabling disease that manifests as prolonged involuntary twisting movements. DYT-THAP1 is an inherited form of isolated dystonia caused by mutations in THAP1 encoding the transcription factor THAP1. The phe81leu (F81L) missense mutation is representative of a category of poorly understood mutations that do not occur on residues critical for DNA binding. Here, we demonstrate that the F81L mutation (THAP1F81L) impairs THAP1 transcriptional activity and disrupts CNS myelination. Strikingly, THAP1F81L exhibits normal DNA binding but causes a significantly reduced DNA binding of YY1, its transcriptional partner that also has an established role in oligodendrocyte lineage progression. Our results suggest a model of molecular pathogenesis whereby THAP1F81L normally binds DNA but is unable to efficiently organize an active transcription complex.


2021 ◽  
Vol 19 ◽  
Author(s):  
Gonzalo Garcia-Martin ◽  
Berta Alcover-Sanchez ◽  
Francisco Wandosell ◽  
Beatriz Cubelos

Brain ischemia, also known as ischemic stroke, occurs when there is a lack of blood supply into the brain. When an ischemic insult appears, both neurons and glial cells can react in several ways that will determine the severity and prognosis. This high heterogeneity of responses has been a major obstacle in developing effective treatments or preventive methods for stroke. Although white matter pathophysiology has not been deeply assessed in stroke, its remodelling can greatly influence the clinical outcome and the disability degree. Oligodendrocytes, the unique cell type implied in CNS myelination, are sensible to ischemic damage. Loss of myelin sheaths can compromise axon survival, so new Oligodendrocyte Precursor Cells are required to restore brain function. Stroke can, therefore, enhance oligodendrogenesis to regenerate those new oligodendrocytes that will ensheath the damaged axons. Given that myelination is a highly complex process that requires the coordination of multiple pathways such as Sonic Hedgehog, RTKs or Wnt/β-catenin, we will analyse new research highlighting their importance after brain ischemia. In addition, oligodendrocytes are not isolated cells inside the brain, but rather form part of a dynamic environment of interactions between neurons and glial cells. For this reason, we will put some context into how microglia and astrocytes react against stroke and influence oligodendrogenesis to highlight the relevance of remyelination in the ischemic brain. This will help to guide future studies to develop treatments focused on potentiating the ability of the brain to repair the damage.


2021 ◽  
Author(s):  
Yan Wang ◽  
Sheng Zhang ◽  
Bokyung Kim ◽  
Vanessa L. Hull ◽  
Jie Xu ◽  
...  

AbstractThe function of poly(ADP-ribosyl) polymerase 1 (PARP1) in myelination and remyelination of the central nervous system (CNS) remain enigmatic. Here we report that PARP1 is an intrinsic driver for oligodendroglial development and myelination. Genetic PARP1 depletion impairs the differentiation of oligodendrocyte progenitor cells (OPCs) into oligodendrocytes and impedes CNS myelination. Mechanistically, PARP1-mediated PARylation activity is not only necessary but also sufficient for OPC differentiation. At the molecular level, we identify the RNA-binding protein Myef2 as a novel PARylated target which we show controls OPC differentiation through PARylation-modulated de-repression of myelin protein expression. Furthermore, PARP1’s enzymatic activity is necessary for oligodendrocyte and myelin regeneration after demyelination. Together, our findings suggest that PARP1-mediated PARylation activity may be a potential therapeutic target for promoting OPC differentiation and remyelination in neurological disorders characterized by arrested OPC differentiation and remyelination failure such as multiple sclerosis.


2021 ◽  
Author(s):  
Megan E Madden ◽  
Daumante Suminaite ◽  
Elelbin Ortiz ◽  
Jason J Early ◽  
Sigrid Koudelka ◽  
...  

Myelination is essential for central nervous system (CNS) formation, health and function. As a model organism, larval zebrafish have been extensively employed to investigate the molecular and cellular basis of CNS myelination, due to their genetic tractability and suitability for non-invasive live cell imaging. However, it has not been assessed to what extent CNS myelination affects neural circuit function in zebrafish larvae, prohibiting the integration of molecular and cellular analyses of myelination with concomitant network maturation. To test whether larval zebrafish might serve as a suitable platform with which to study the effects of CNS myelination and its dysregulation on circuit function, we generated zebrafish myelin regulatory factor (myrf) mutants with CNS-specific hypomyelination and investigated how this affected their axonal conduction properties and behaviour. We found that myrf mutant larvae exhibited increased latency to perform startle responses following defined acoustic stimuli. Furthermore, we found that hypomyelinated animals often selected an impaired response to acoustic stimuli, exhibiting a bias towards reorientation behaviour instead of the stimulus-appropriate startle response. To begin to study how myelination affected the underlying circuitry, we established electrophysiological protocols to assess various conduction properties along single axons. We found that the hypomyelinated myrf mutants exhibited reduced action potential conduction velocity and an impaired ability to sustain high frequency action potential firing. This study indicates that larval zebrafish can be used to bridge molecular and cellular investigation of CNS myelination with multiscale assessment of neural circuit function.


RNA Biology ◽  
2020 ◽  
pp. 1-12
Author(s):  
Yue Shu ◽  
Tianyuan Luo ◽  
Mingda Wang ◽  
Yu Zhang ◽  
Lin Zhang ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document