scholarly journals PI(3,5)P2 biosynthesis regulates oligodendrocyte differentiation by intrinsic and extrinsic mechanisms

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Yevgeniya A Mironova ◽  
Guy M Lenk ◽  
Jing-Ping Lin ◽  
Seung Joon Lee ◽  
Jeffery L Twiss ◽  
...  

Proper development of the CNS axon-glia unit requires bi-directional communication between axons and oligodendrocytes (OLs). We show that the signaling lipid phosphatidylinositol-3,5-bisphosphate [PI(3,5)P2] is required in neurons and in OLs for normal CNS myelination. In mice, mutations of Fig4, Pikfyve or Vac14, encoding key components of the PI(3,5)P2 biosynthetic complex, each lead to impaired OL maturation, severe CNS hypomyelination and delayed propagation of compound action potentials. Primary OLs deficient in Fig4 accumulate large LAMP1+ and Rab7+ vesicular structures and exhibit reduced membrane sheet expansion. PI(3,5)P2 deficiency leads to accumulation of myelin-associated glycoprotein (MAG) in LAMP1+perinuclear vesicles that fail to migrate to the nascent myelin sheet. Live-cell imaging of OLs after genetic or pharmacological inhibition of PI(3,5)P2 synthesis revealed impaired trafficking of plasma membrane-derived MAG through the endolysosomal system in primary cells and brain tissue. Collectively, our studies identify PI(3,5)P2 as a key regulator of myelin membrane trafficking and myelinogenesis.

2000 ◽  
Vol 5 (4) ◽  
pp. 227-235 ◽  
Author(s):  
Sidney Ochs ◽  
Rahman Pourmand ◽  
Kenan Si ◽  
Richard N. Friedman

2009 ◽  
Vol 8 (1) ◽  
pp. 40 ◽  
Author(s):  
Stefan Brill ◽  
Joachim Müller ◽  
Rudolf Hagen ◽  
Alexander Möltner ◽  
Steffi-Johanna Brockmeier ◽  
...  

2010 ◽  
Vol 31 (1) ◽  
pp. 134-145 ◽  
Author(s):  
Isaac Alvarez ◽  
Angel de la Torre ◽  
Manuel Sainz ◽  
Cristina Roldán ◽  
Hansjoerg Schoesser ◽  
...  

1983 ◽  
Vol 61 (10) ◽  
pp. 1149-1155 ◽  
Author(s):  
J. A. Armour

Afferent stimulation of one thoracic cardiopulmonary nerve generated compound action potentials in the efferent axons of other ipsilateral cardiopulmonary nerves in dogs, 14 days after their thoracic autonomic ganglia had been decentralized. The compound action potentials were influenced by the frequency of activation and (in 5 of 12 dogs) by pharmacological autonomic blocking agents (hexamethonium, atropine, phentolamine, and propranolol). Moreover, they were abolished transiently when chymotrypsin was injected locally into the ganglia, and extendedly when manganese was injected. Thus, synapses that can be activated by stimulation of afferent nerves exist in chronically decentralized thoracic autonomic nerves and ganglia. It is proposed that regulation of the heart and lungs occurs in part via thoracic autonomic neural elements independent of the central nervous system.


Sign in / Sign up

Export Citation Format

Share Document