scholarly journals Gα12/13 regulate epiboly by inhibiting E-cadherin activity and modulating the actin cytoskeleton

2009 ◽  
Vol 184 (6) ◽  
pp. 909-921 ◽  
Author(s):  
Fang Lin ◽  
Songhai Chen ◽  
Diane S. Sepich ◽  
Jennifer Ray Panizzi ◽  
Sherry G. Clendenon ◽  
...  

Epiboly spreads and thins the blastoderm over the yolk cell during zebrafish gastrulation, and involves coordinated movements of several cell layers. Although recent studies have begun to elucidate the processes that underlie these epibolic movements, the cellular and molecular mechanisms involved remain to be fully defined. Here, we show that gastrulae with altered Gα12/13 signaling display delayed epibolic movement of the deep cells, abnormal movement of dorsal forerunner cells, and dissociation of cells from the blastoderm, phenocopying e-cadherin mutants. Biochemical and genetic studies indicate that Gα12/13 regulate epiboly, in part by associating with the cytoplasmic terminus of E-cadherin, and thereby inhibiting E-cadherin activity and cell adhesion. Furthermore, we demonstrate that Gα12/13 modulate epibolic movements of the enveloping layer by regulating actin cytoskeleton organization through a RhoGEF/Rho-dependent pathway. These results provide the first in vivo evidence that Gα12/13 regulate epiboly through two distinct mechanisms: limiting E-cadherin activity and modulating the organization of the actin cytoskeleton.

2001 ◽  
Vol 12 (12) ◽  
pp. 3759-3772 ◽  
Author(s):  
Guisheng Zeng ◽  
Xianwen Yu ◽  
Mingjie Cai

The serine/threonine kinase Prk1p is known to be involved in the regulation of the actin cytoskeleton organization in budding yeast. One possible function of Prk1p is the negative regulation of Pan1p, an actin patch regulatory protein that forms a complex in vivo with at least two other proteins, Sla1p and End3p. In this report, we identified Sla1p as another substrate for Prk1p. The phosphorylation of Sla1p by Prk1p was established in vitro with the use of immunoprecipitated Prk1p and in vivo with the use ofPRK1 overexpression, and was further supported by the finding that immunoprecipitated Sla1p contained PRK1- and ARK1-dependent kinase activities. Stable complex formation between Prk1p and Sla1p/Pan1p in vivo could be observed once the phosphorylation reaction was blocked by mutation in the catalytic site of Prk1p. Elevation of Prk1p activities in wild-type cells resulted in a number of deficiencies, including those in colocalization of Pan1p and Sla1p, endocytosis, and cell wall morphogenesis, likely attributable to a disintegration of the Pan1p/Sla1p/End3p complex. These results lend a strong support to the model that the phosphorylation of the Pan1p/Sla1p/End3p complex by Prk1p is one of the important mechanisms by which the organization and functions of the actin cytoskeleton are regulated.


2001 ◽  
Vol 12 (8) ◽  
pp. 2396-2411 ◽  
Author(s):  
Michelangelo Foti ◽  
Anjon Audhya ◽  
Scott D. Emr

Synthesis and turnover of phosphoinositides are tightly regulated processes mediated by a set of recently identified kinases and phosphatases. We analyzed the primary role of the phosphoinositide phosphatase Sac1p in Saccharomyces cerevisiae with the use of a temperature-sensitive allele of this gene. Our analysis demonstrates that inactivation of Sac1p leads to a specific increase in the cellular levels of phosphatidylinositol 4-phosphate (PtdIns(4)P), accompanied by changes in vacuole morphology and an accumulation of lipid droplets. We have found that the majority of Sac1p localizes to the endoplasmic reticulum, and this localization is crucial for the efficient turnover of PtdIns(4)P. By generating double mutant strains harboring the sac1tsallele and one of two temperature-sensitive PtdIns 4-kinase genes,stt4tsor pik1ts, we have demonstrated that the bulk of PtdIns(4)P that accumulates insac1 mutant cells is generated by the Stt4 PtdIns 4-kinase, and not Pik1p. Consistent with these findings, inactivation of Sac1p partially rescued defects associated withstt4tsbut notpik1tsmutant cells. To analyze potential overlapping functions between Sac1p and other homologous phosphoinositide phosphatases, sac1tsmutant cells lacking various other synaptojanin-like phosphatases were generated. These double and triple mutants exacerbated the accumulation of intracellular phosphoinositides and caused defects in Golgi function. Together, our results demonstrate that Sac1p primarily turns over Stt4p-generated PtdIns(4)P and that the membrane localization of Sac1p is important for its function in vivo. Regulation of this PtdIns(4)P pool appears to be crucial for the maintenance of vacuole morphology, regulation of lipid storage, Golgi function, and actin cytoskeleton organization.


2000 ◽  
Vol 20 (1) ◽  
pp. 12-25 ◽  
Author(s):  
Hsin-Yao Tang ◽  
Jing Xu ◽  
Mingjie Cai

ABSTRACT The EH domain proteins Pan1p and End3p of budding yeast have been known to form a complex in vivo and play important roles in organization of the actin cytoskeleton and endocytosis. In this report, we describe new findings concerning the function of the Pan1p-End3p complex. First, we found that the Pan1p-End3p complex associates with Sla1p, another protein known to be required for the assembly of cortical actin structures. Sla1p interacts with the first long repeat region of Pan1p and the N-terminal EH domain of End3p, thus leaving the Pan1p-End3p interaction, which requires the second long repeat of Pan1p and the C-terminal repeat region of End3p, undisturbed. Second, Pan1p, End3p, and Sla1p are also required for normal cell wall morphogenesis. Each of the Pan1-4, sla1Δ, andend3Δ mutants displays the abnormal cell wall morphology previously reported for the act1-1 mutant. These cell wall defects are also exhibited by wild-type cells overproducing the C-terminal region of Sla1p that is responsible for interactions with Pan1p and End3p. These results indicate that the functions of Pan1p, End3p, and Sla1p in cell wall morphogenesis may depend on the formation of a heterotrimeric complex. Interestingly, the cell wall abnormalities exhibited by these cells are independent of the actin cytoskeleton organization on the cell cortex, as they manifest despite the presence of apparently normal cortical actin cytoskeleton. Examination of several act1 mutants also supports this conclusion. These observations suggest that the Pan1p-End3p-Sla1p complex is required not only for normal actin cytoskeleton organization but also for normal cell wall morphogenesis in yeast.


2011 ◽  
Vol 52 (10) ◽  
pp. 1844-1855 ◽  
Author(s):  
Miriam Akkerman ◽  
Elysa J. R. Overdijk ◽  
Jan H. N. Schel ◽  
Anne Mie C. Emons ◽  
Tijs Ketelaar

Development ◽  
1999 ◽  
Vol 126 (24) ◽  
pp. 5559-5568 ◽  
Author(s):  
J. Mathur ◽  
P. Spielhofer ◽  
B. Kost ◽  
N. Chua

Arabidopsis thaliana trichomes provide an attractive model system to dissect molecular processes involved in the generation of shape and form in single cell morphogenesis in plants. We have used transgenic Arabidopsis plants carrying a GFP-talin chimeric gene to analyze the role of the actin cytoskeleton in trichome cell morphogenesis. We found that during trichome cell development the actin microfilaments assumed an increasing degree of complexity from fine filaments to thick, longitudinally stretched cables. Disruption of the F-actin cytoskeleton by actin antagonists produced distorted but branched trichomes which phenocopied trichomes of mutants belonging to the ‘distorted’ class. Subsequent analysis of the actin cytoskeleton in trichomes of the distorted mutants, alien, crooked, distorted1, gnarled, klunker and wurm uncovered actin organization defects in each case. Treatments of wild-type seedlings with microtubule-interacting drugs elicited a radically different trichome phenotype characterized by isotropic growth and a severe inhibition of branch formation; these trichomes did not show defects in actin cytoskeleton organization. A normal actin cytoskeleton was also observed in trichomes of the zwichel mutant which have reduced branching. ZWICHEL, which was previously shown to encode a kinesin-like protein is thought to be involved in microtubule-linked processes. Based on our results we propose that microtubules establish the spatial patterning of trichome branches whilst actin microfilaments elaborate and maintain the overall trichome pattern during development.


2021 ◽  
Vol 55 (5) ◽  
pp. 59-63
Author(s):  
M.A. Usik ◽  
◽  
A.A. Sukonkina ◽  
I.V. Ogneva ◽  
◽  
...  

The paper deals with the effects of modeled microgravity on actin cytoskeleton in oocytes at various stages of Drosophila melanogaster oogenesis over the complete gametogenesis cycle. Total actin content and F-actin singly was determined using immunohistochemical analysis. The results point to the growth of both total beta-actin and its polymer recognized by phalloidin. This finding can have key implications for evaluation of risks for the reproductive potential from the spaceflight factors.


Sign in / Sign up

Export Citation Format

Share Document