golgi body
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 13)

H-INDEX

18
(FIVE YEARS 1)

2021 ◽  
Vol 9 ◽  
Author(s):  
Haifang Liu ◽  
Jiancheng Guo ◽  
Aaron Albert Aryee ◽  
Linlin Hua ◽  
Yuanqiang Sun ◽  
...  

Cell organelles play crucial roles in the normal functioning of an organism, therefore the disruption of their operation is associated with diseases and in some cases death. Thus, the detection and monitoring of the activities within these organelles are of great importance. Several probes based on graphene oxide, small molecules, and other nanomaterials have been developed for targeting specific organelles. Among these materials, organelle-targeted fluorescent probes based on carbon dots have attracted substantial attention in recent years owing to their superior characteristics, which include facile synthesis, good photostability, low cytotoxicity, and high selectivity. The ability of these probes to target specific organelles enables researchers to obtain valuable information for understanding the processes involved in their functions and/or malfunctions and may also aid in effective targeted drug delivery. This review highlights recently reported organelle-specific fluorescent probes based on carbon dots. The precursors of these carbon dots are also discussed because studies have shown that many of the intrinsic properties of these probes originate from the precursor used. An overview of the functions of the discussed organelles, the types of probes used, and their advantages and limitations are also provided. Organelles such as the mitochondria, nucleus, lysosomes, and endoplasmic reticulum have been the central focus of research to date, whereas the Golgi body, centrosome, vesicles, and others have received comparatively little attention. It is therefore the hope of the authors that further studies will be conducted in an effort to design probes with the ability to localize within these less studied organelles so as to fully elucidate the mechanisms underlying their function.


Author(s):  
Durbadal Ojha ◽  
Clayton W. Winkler ◽  
Jacqueline M. Leung ◽  
Tyson A. Woods ◽  
Catherine Z. Chen ◽  
...  
Keyword(s):  

2021 ◽  
Vol 118 (6) ◽  
pp. e2024704118
Author(s):  
Min Chen ◽  
Jer-Young Lin ◽  
Xiaomeng Wu ◽  
Nestor R. Apuya ◽  
Kelli F. Henry ◽  
...  

An important question is what genes govern the differentiation of plant embryos into suspensor and embryo proper regions following fertilization and division of the zygote. We compared embryo proper and suspensor transcriptomes of four plants that vary in embryo morphology within the suspensor region. We determined that genes encoding enzymes in several metabolic pathways leading to the formation of hormones, such as gibberellic acid, and other metabolites are up-regulated in giant scarlet runner bean and common bean suspensors. Genes involved in transport and Golgi body organization are up-regulated within the suspensors of these plants as well, strengthening the view that giant specialized suspensors serve as a hormone factory and a conduit for transferring substances to the developing embryo proper. By contrast, genes controlling transcriptional regulation, development, and cell division are up-regulated primarily within the embryo proper. Transcriptomes from less specialized soybean and Arabidopsis suspensors demonstrated that fewer genes encoding metabolic enzymes and hormones are up-regulated. Genes active in the embryo proper, however, are functionally similar to those active in scarlet runner bean and common bean embryo proper regions. We uncovered a set of suspensor- and embryo proper–specific transcription factors (TFs) that are shared by all embryos irrespective of morphology, suggesting that they are involved in early differentiation processes common to all plants. Chromatin immunoprecipitation sequencing (ChIP-Seq) experiments with scarlet runner bean and soybean WOX9, an up-regulated suspensor TF, gained entry into a regulatory network important for suspensor development irrespective of morphology.


2020 ◽  
Author(s):  
Min Chen ◽  
Jer-Young Lin ◽  
Xiaomeng Wu ◽  
Nestor R. Apuya ◽  
Kelli F. Henry ◽  
...  

AbstractAn important question is what genes govern the differentiation of plant embryos into suspensor and embryo-proper regions following fertilization and division of the zygote. We compared embryo proper and suspensor transcriptomes of four plants that vary in embryo morphology within the suspensor region. We determined that genes encoding enzymes in several metabolic pathways leading to the formation of hormones, such as gibberellic acid, and other metabolites are up-regulated in giant Scarlet Runner Bean and Common Bean suspensors. Genes involved in transport and Golgi body organization are up-regulated within the suspensors of these plants as well – strengthening the view that giant specialized suspensors serve as a hormone factory and a conduit for transferring substances to the developing embryo proper. By contrast, genes controlling transcriptional regulation, development, and cell division are up-regulated primarily within the embryo proper. Transcriptomes from less specialized soybean and Arabidopsis suspensors demonstrated that fewer genes encoding metabolic enzymes and hormones are up-regulated. Genes active in the embryo proper, however, are functionally similar to those active in Scarlet Runner Bean and Common Bean embryo proper regions. We uncovered a set of suspensor- and embryo-proper-specific transcription factors (TFs) that are shared by all embryos irrespective of morphology, suggesting that they are involved in early differentiation processes common to all plants. ChIP-Seq experiments with Scarlet Runner Bean and soybean WOX9, an up-regulated suspensor TF, gained entry into a regulatory network important for suspensor development irrespective of morphology.SignificanceHow plant embryos are differentiated into embryo proper and suspensor regions following fertilization is a major unanswered question. The suspensor is unique because it can vary in morphology in different plant species. We hypothesized that regulatory genes controlling the specification of embryo proper and suspensor regions should be shared by all plants irrespective of embryo morphology. We compared embryo proper and suspensor transcriptomes of plants with distinct suspensor morphologies. Scarlet Runner Bean and Common Bean have highly specialized giant suspensor regions, whereas soybean and Arabidopsis suspensors are smaller and less specialized. We uncovered a small set of embryo-proper- and suspensor-specific transcription factors shared by all embryos irrespective of morphology, suggesting that they play an important role in early embryo differentiation.


2020 ◽  
Vol 71 (11) ◽  
pp. 3323-3339 ◽  
Author(s):  
David S Domozych ◽  
Li Sun ◽  
Kattia Palacio-Lopez ◽  
Reagan Reed ◽  
Susan Jeon ◽  
...  

Abstract The extracellular matrix (ECM) of many charophytes, the assemblage of green algae that are the sister group to land plants, is complex, produced in large amounts, and has multiple essential functions. An extensive secretory apparatus and endomembrane system are presumably needed to synthesize and secrete the ECM, but structural details of such a system have not been fully characterized. Penium margaritaceum is a valuable unicellular model charophyte for studying secretion dynamics. We report that Penium has a highly organized endomembrane system, consisting of 150–200 non-mobile Golgi bodies that process and package ECM components into different sets of vesicles that traffic to the cortical cytoplasm, where they are transported around the cell by cytoplasmic streaming. At either fixed or transient areas, specific cytoplasmic vesicles fuse with the plasma membrane and secrete their constituents. Extracellular polysaccharide (EPS) production was observed to occur in one location of the Golgi body and sometimes in unique Golgi hybrids. Treatment of cells with brefeldin A caused disruption of the Golgi body, and inhibition of EPS secretion and cell wall expansion. The structure of the endomembrane system in Penium provides mechanistic insights into how extant charophytes generate large quantities of ECM, which in their ancestors facilitated the colonization of land.


Antioxidants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 129
Author(s):  
Yuta Hatori ◽  
Takanori Kubo ◽  
Yuichiro Sato ◽  
Sachiye Inouye ◽  
Reiko Akagi ◽  
...  

Glutathione is a small thiol-containing peptide that plays a central role in maintaining cellular redox homeostasis. Glutathione serves as a physiologic redox buffer by providing thiol electrons for catabolizing harmful oxidants and reversing oxidative effects on biomolecules. Recent evidence suggests that the balance of reduced and oxidized glutathione (GSH/GSSG) defines the redox states of Cys residues in proteins and fine-tunes their stabilities and functions. To elucidate the redox balance of cellular glutathione at subcellular resolution, a number of redox-sensitive green fluorescent protein (roGFP) variants have been developed. In this study, we constructed and functionally validated organelle- and cytoskeleton-targeted roGFP and elucidated the redox status of the cytosolic glutathione at a subcellular resolution. These new redox sensors firmly established a highly reduced redox equilibrium of cytosolic glutathione, wherein significant deviation was observed among cells. By targeting the sensor to the cytosolic and lumen sides of the Golgi membrane, we identified a prominent redox gradient across the biological membrane at the Golgi body. The results demonstrated that organelle- and cytoskeleton-targeted sensors enable the assessment of glutathione oxidation near the cytosolic surfaces of different organelle membranes.


2020 ◽  
Vol 20 (1) ◽  
pp. 67-75
Author(s):  
Qiurong Zhao ◽  
Mingsong Wu ◽  
Xiang Zheng ◽  
Lei Yang ◽  
Zhimin Zhang ◽  
...  

Background: Brefeldin A (BFA) has been known to induce endoplasmic reticulum stress (ERS) and Golgi body stress in cancer cells. ERGIC3 (endoplasmic reticulum-Golgi intermediate compartment 3) is a type II transmembrane protein located in the endoplasmic reticulum and Golgi body. ERGIC3 over-expression is frequently observed in cancer cells. Objective: In this study, we aim to explore whether BFA administered concurrently with ERGIC3 silencing would work additively or synergistically inhibit cancer cell growth. Methods: ERGIC3-siRNA was used to knock-down the expression of ERGIC3 and BFA was used to induce ERS in lung cancer cell lines GLC-82 and A549. Q-RT-PCR and Western Blot analysis were used to detect the expression of ERGIC3 and downstream molecules. GraphPad Prism 6 was used to quantify the data. Results: We demonstrated that silencing of ERGIC3 via siRNA effectively led to down-regulation of ERGIC3 at both mRNA and protein levels in GLC-82 and A549 cells. While BFA or ERGIC3- silencing alone could induce ERS and inhibit cell growth, the combination treatment of lung cancer cells with ERGIC3-silencing and BFA was able to additively enhance the inhibition effects of cell growth through up-regulation of GRP78 resulting in cell cycle arrest. Conclusion: ERGIC3 silencing in combination with BFA treatment could additively inhibit lung cancer cell growth. This finding might shed a light on new adjuvant therapy for lung adenocarcinoma.


2019 ◽  
Author(s):  
Keyword(s):  

2019 ◽  
Vol 67 ◽  
pp. 357-370 ◽  
Author(s):  
D. W. T. Crompton

Don Northcote became eminent in the field of plant biochemistry following his identification of the processes involved in the synthesis and deposition of polysaccharides that constitute the cell wall of plants. His researches spanned lower and higher plant species and he showed by the application of a variety of experimental techniques, including radioautography, electrophoresis, freeze etching and the novel use of electron microscopy, that much of the material of the cell wall is synthesized in cytoplasmic organelles before being transported to the developing wall in vesicles assembled from the membranes of the Golgi body. His findings inspired many colleagues to build on the foundation he laid for understanding the biochemistry of cell morphogenesis. Nearly his entire career was spent in fundamental research and teaching in the Department of Biochemistry, University of Cambridge, from 1948 until his retirement in 1992. In addition, he was a fellow of St John's College, Cambridge, from 1960 to 1976, and he served Sidney Sussex College, Cambridge, as master from 1976 to 1992.


Sign in / Sign up

Export Citation Format

Share Document