scholarly journals Two structurally distinct domains of the nucleoporin Nup170 cooperate to tether a subset of nucleoporins to nuclear pores

2009 ◽  
Vol 185 (3) ◽  
pp. 387-395 ◽  
Author(s):  
Dirk Flemming ◽  
Phillip Sarges ◽  
Philipp Stelter ◽  
Andrea Hellwig ◽  
Bettina Böttcher ◽  
...  

How individual nucleoporins (Nups) perform their role in nuclear pore structure and function is largely unknown. In this study, we examined the structure of purified Nup170 to obtain clues about its function. We show that Nup170 adopts a crescent moon shape with two structurally distinct and separable domains, a β-propeller N terminus and an α-solenoid C terminus. To address the individual roles of each domain, we expressed these domains separately in yeast. Notably, overexpression of the Nup170 C domain was toxic in nup170Δ cells and caused accumulation of several Nups in cytoplasmic foci. Further experiments indicated that the C-terminal domain anchors Nup170 to nuclear pores, whereas the N-terminal domain functions to recruit or retain a subset of Nups, including Nup159, Nup188, and Pom34, at nuclear pores. We conclude that Nup170 performs its role as a structural adapter between cytoplasmically oriented Nups and the nuclear pore membrane.

2005 ◽  
Vol 16 (4) ◽  
pp. 1661-1672 ◽  
Author(s):  
James J. Wu ◽  
Lisa E. Choi ◽  
Guido Guidotti

Rat CD39, a membrane-bound ectonucleoside triphosphate diphosphohydrolase that hydrolyzes extracellular nucleoside tri- and diphosphates, has seven potential N-glycosylation sites at asparagine residues 73, 226, 291, 333, 375, 429, and 458. To determine their roles in the structure and function of CD39, we mutated these sites individually or in combination by replacing asparagine with serine or glutamine and analyzed the surface expression and the enzymatic activity of the mutants. The results indicate that rat CD39 can be glycosylated at all seven sites when expressed in COS7 cells. Glycosylation sites 73 at the N terminus, 333 in the middle, and 429 and 458 at the C terminus were principally required for cell surface appearance of enzymatically active CD39. Whereas deletion of these sites individually had modest effects on surface ATPase activity, some double deletions of these sites had major effects on both surface activity and expression. The importance of these N-glycosylation sites is recognizable in other members of the ectonucleoside triphosphate diphosphohydrolase family.


2000 ◽  
Vol 11 (12) ◽  
pp. 4189-4203 ◽  
Author(s):  
Harry Scherthan ◽  
Martin Jerratsch ◽  
Bibo Li ◽  
Susan Smith ◽  
Maj Hultén ◽  
...  

Mammalian telomeres consist of TTAGGG repeats, telomeric repeat binding factor (TRF), and other proteins, resulting in a protective structure at chromosome ends. Although structure and function of the somatic telomeric complex has been elucidated in some detail, the protein composition of mammalian meiotic telomeres is undetermined. Here we show, by indirect immunofluorescence (IF), that the meiotic telomere complex is similar to its somatic counterpart and contains significant amounts of TRF1, TRF2, and hRap1, while tankyrase, a poly-(ADP-ribose)polymerase at somatic telomeres and nuclear pores, forms small signals at ends of human meiotic chromosome cores. Analysis of rodent spermatocytes reveals Trf1 at mouse, TRF2 at rat, and mammalian Rap1 at meiotic telomeres of both rodents. Moreover, we demonstrate that telomere repositioning during meiotic prophase occurs in sectors of the nuclear envelope that are distinct from nuclear pore-dense areas. The latter form during preleptotene/leptotene and are present during entire prophase I.


Author(s):  
Mubarak A. Alamri ◽  
Ahmed D. Alafnan ◽  
Obaid Afzal ◽  
Alhumaidi B. Alabbas ◽  
Safar M. Alqahtani

Background: The STE20/SPS1-related proline/alanine-rich kinase (SPAK) is a component of WNKSPAK/OSR1 signaling pathway that plays an essential role in blood pressure regulation. The function of SPAK is mediated by its highly conserved C-terminal domain (CTD) that interacts with RFXV/I motifs of upstream activators, WNK kinases, and downstream substrate, cation-chloride cotransporters. Objective: To determine and validate the three-dimensional structure of the CTD of SPAK and to study and analyze its interaction with the RFXV/I motifs. Methods: A homology model of SPAK CTD was generated and validated through multiple approaches. The model was based on utilizing the OSR1 protein kinase as a template. This model was subjected to 100 ns molecular dynamic (MD) simulation to evaluate its dynamic stability. The final equilibrated model was used to dock the RFQV-peptide derived from WNK4 into the primary pocket that was determined based on the homology sequence between human SPAK and OSR1 CTDs. The mechanism of interaction, conformational rearrangement and dynamic stability of the binding of RFQV-peptide to SPAK CTD were characterized by molecular docking and molecular dynamic simulation. Results: The MD simulation suggested that the binding of RFQV induces a large conformational change due to the distribution of salt bridge within the loop regions. These results may help in understanding the relation between the structure and function of SPAK CTD and to support drug design of potential SPAK kinase inhibitors as antihypertensive agents. Conclusion: This study provides deep insight into SPAK CTD structure and function relationship.


2005 ◽  
Vol 16 (4) ◽  
pp. 1606-1616 ◽  
Author(s):  
David Michaelson ◽  
Wasif Ali ◽  
Vi K. Chiu ◽  
Martin Bergo ◽  
Joseph Silletti ◽  
...  

The CAAX motif at the C terminus of most monomeric GTPases is required for membrane targeting because it signals for a series of three posttranslational modifications that include isoprenylation, endoproteolytic release of the C-terminal– AAX amino acids, and carboxyl methylation of the newly exposed isoprenylcysteine. The individual contributions of these modifications to protein trafficking and function are unknown. To address this issue, we performed a series of experiments with mouse embryonic fibroblasts (MEFs) lacking Rce1 (responsible for removal of the –AAX sequence) or Icmt (responsible for carboxyl methylation of the isoprenylcysteine). In MEFs lacking Rce1 or Icmt, farnesylated Ras proteins were mislocalized. In contrast, the intracellular localizations of geranylgeranylated Rho GTPases were not perturbed. Consistent with the latter finding, RhoGDI binding and actin remodeling were normal in Rce1- and Icmt-deficient cells. Swapping geranylgeranylation for farnesylation on Ras proteins or vice versa on Rho proteins reversed the differential sensitivities to Rce1 and Icmt deficiency. These results suggest that postprenylation CAAX processing is required for proper localization of farnesylated Ras but not geranygeranylated Rho proteins.


2001 ◽  
Vol 43 (6) ◽  
pp. 135-135 ◽  
Author(s):  
J.-U. Kreft ◽  
J. W. Wimpenny

We have simulated a nitrifying biofilm with one ammonia and one nitrite oxidising species in order to elucidate the effect of various extracellular polymeric substance (EPS) production scenarios on biofilm structure and function. The individual-based model (IbM) BacSim simulates diffusion of all substrates on a two-dimensional lattice. Each bacterium is individually simulated as a sphere of given size in a continuous, three-dimensional space. EPS production kinetics was described by a growth rate dependent and an independent term (Luedeking-Piret equation). The structure of the biofilm was dramatically influenced by EPS production or capsule formation. EPS production decreased growth of producers and stimulated growth of non-producers because of the energy cost involved. For the same reason, EPS accumulation can fall as its rate of production increases. The patchiness and roughness of the biofilm decreased and the porosity increased due to EPS production. EPS density was maximal in the middle of the vertical profile. Introduction of binding forces between like cells increased clustering.


Sign in / Sign up

Export Citation Format

Share Document