rho proteins
Recently Published Documents


TOTAL DOCUMENTS

212
(FIVE YEARS 20)

H-INDEX

55
(FIVE YEARS 2)

2021 ◽  
Vol 22 (22) ◽  
pp. 12417
Author(s):  
Stefano Barbera ◽  
Luisa Raucci ◽  
Roberta Lugano ◽  
Gian Marco Tosi ◽  
Anna Dimberg ◽  
...  

During angiogenesis, cell adhesion molecules expressed on the endothelial cell surface promote the growth and survival of newly forming vessels. Hence, elucidation of the signaling pathways activated by cell-to-matrix adhesion may assist in the discovery of new targets to be used in antiangiogenic therapy. In proliferating endothelial cells, the single-pass transmembrane glycoprotein CD93 has recently emerged as an important endothelial cell adhesion molecule regulating vascular maturation. In this study, we unveil a signaling pathway triggered by CD93 that regulates actin cytoskeletal dynamics responsible of endothelial cell adhesion. We show that the Src-dependent phosphorylation of CD93 and the adaptor protein Cbl leads to the recruitment of Crk, which works as a downstream integrator in the CD93-mediated signaling. Moreover, confocal microscopy analysis of FRET-based biosensors shows that CD93 drives the coordinated activation of Rac1 and RhoA at the cell edge of spreading cells, thus promoting the establishment of cell polarity and adhesion required for cell motility.


Author(s):  
Haorui Zhang ◽  
Youssif Ben Zablah ◽  
Haiwang Zhang ◽  
Zhengping Jia

Memory impairments are associated with many brain disorders such as autism, Alzheimer’s disease, and depression. Forming memories involves modifications of synaptic transmission and spine morphology. The Rho family small GTPases are key regulators of synaptic plasticity by affecting various downstream molecules to remodel the actin cytoskeleton. In this paper, we will review recent studies on the roles of Rho proteins in the regulation of hippocampal long-term potentiation (LTP) and long-term depression (LTD), the most extensively studied forms of synaptic plasticity widely regarded as cellular mechanisms for learning and memory. We will also discuss the involvement of Rho signaling in spine morphology, the structural basis of synaptic plasticity and memory formation. Finally, we will review the association between brain disorders and abnormalities of Rho function. It is expected that studying Rho signaling at the synapse will contribute to the understanding of how memory is formed and disrupted in diseases.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2432
Author(s):  
Meenakshi A. Chellaiah

Tumor necrosis factor-alpha (TNF-α) signaling regulates phosphorylation of L-plastin, which is involved in forming the nascent sealing zone, a precursor zone for the matured sealing ring. This study aimed to illustrate the molecular mechanisms of L-plastin phosphorylation and the subsequent formation of the nascent sealing zone in osteoclasts treated with TNF-α. Here, we report that anti-TNF-receptor 1, inhibitors of signaling proteins (Src, PI3-K, Rho, and Rho-kinase), and siRNA of TRAF-6 attenuated the phosphorylation of LPL and filamentous actin content significantly in the presence of TNF-α. An inhibitor of integrin αvβ3, PKC, or PKA did not inhibit TNF-α-induced L-plastin phosphorylation. Inhibitors of Src and PI3-K and not Rho or Rho-kinase reduced tyrosine phosphorylation of TRAF-6, suggesting that Src and PI3-K regulate TRAF-6 phosphorylation, and Rho and Rho-kinase are downstream of TRAF-6 regulation. Osteoclasts expressing constitutively active or kinase-defective Src proteins were used to determine the role of Src on L-plastin phosphorylation; similarly, the effect of Rho was confirmed by transducing TAT-fused constitutively active (V14) or dominant-negative (N19) Rho proteins into osteoclasts. Pull-down analysis with glutathione S-transferase-fused SH2 and SH3 domains of Src and PI3-K demonstrated coprecipitation of L-plastin and TRAF-6 with the SH3 and SH2 domains of the PI3-K and Src proteins. However, the actual order of the interaction of proteins requires further elucidation; a comprehensive screening should corroborate the initial findings of protein interactions via the SH2/SH3 domains. Ultimately, inhibition of the interaction of proteins with SH2/SH3 could reduce L-plastin phosphorylation and affect NSZ formation and bone resorption in conditions that display osteoclast activation and bone loss.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1844
Author(s):  
Maria Luísa da Silveira Hahmeyer ◽  
José Eduardo da Silva-Santos

Sepsis and septic shock are associated with acute and sustained impairment in the function of the cardiovascular system, kidneys, lungs, liver, and brain, among others. Despite the significant advances in prevention and treatment, sepsis and septic shock sepsis remain global health problems with elevated mortality rates. Rho proteins can interact with a considerable number of targets, directly affecting cellular contractility, actin filament assembly and growing, cell motility and migration, cytoskeleton rearrangement, and actin polymerization, physiological functions that are intensively impaired during inflammatory conditions, such as the one that occurs in sepsis. In the last few decades, Rho proteins and their downstream pathways have been investigated in sepsis-associated experimental models. The most frequently used experimental design included the exposure to bacterial lipopolysaccharide (LPS), in both in vitro and in vivo approaches, but experiments using the cecal ligation and puncture (CLP) model of sepsis have also been performed. The findings described in this review indicate that Rho proteins, mainly RhoA and Rac1, are associated with the development of crucial sepsis-associated dysfunction in different systems and cells, including the endothelium, vessels, and heart. Notably, the data found in the literature suggest that either the inhibition or activation of Rho proteins and associated pathways might be desirable in sepsis and septic shock, accordingly with the cellular system evaluated. This review included the main findings, relevance, and limitations of the current knowledge connecting Rho proteins and sepsis-associated experimental models.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 819
Author(s):  
Olga Soriano ◽  
Marta Alcón-Pérez ◽  
Miguel Vicente-Manzanares ◽  
Esther Castellano

Ras and Rho proteins are GTP-regulated molecular switches that control multiple signaling pathways in eukaryotic cells. Ras was among the first identified oncogenes, and it appears mutated in many forms of human cancer. It mainly promotes proliferation and survival through the MAPK pathway and the PI3K/AKT pathways, respectively. However, the myriad proteins close to the plasma membrane that activate or inhibit Ras make it a major regulator of many apparently unrelated pathways. On the other hand, Rho is weakly oncogenic by itself, but it critically regulates microfilament dynamics; that is, actin polymerization, disassembly and contraction. Polymerization is driven mainly by the Arp2/3 complex and formins, whereas contraction depends on myosin mini-filament assembly and activity. These two pathways intersect at numerous points: from Ras-dependent triggering of Rho activators, some of which act through PI3K, to mechanical feedback driven by actomyosin action. Here, we describe the main points of connection between the Ras and Rho pathways as they coordinately drive oncogenic transformation. We emphasize the biochemical crosstalk that drives actomyosin contraction driven by Ras in a Rho-dependent manner. We also describe possible routes of mechanical feedback through which myosin II activation may control Ras/Rho activation.


Author(s):  
Urszula Jankowska ◽  
Bozena Skupien-Rabian ◽  
Bianka Swiderska ◽  
Gabriela Prus ◽  
Marta Dziedzicka-Wasylewska ◽  
...  

AbstractAlthough antipsychotics are routinely used in the treatment of schizophrenia for the last decades, their precise mechanism of action is still unclear. In this study, we investigated changes in the PC12 cells’ proteome under the influence of clozapine, risperidone, and haloperidol to identify protein pathways regulated by antipsychotics. Analysis of the protein profiles in two time points: after 12 and 24 h of incubation with drugs revealed significant alterations in 510 proteins. Further canonical pathway analysis revealed an inhibition of ciliary trophic factor signaling after treatment with haloperidol and showed a decrease in acute phase response signaling in the risperidone group. Interestingly, all tested drugs have caused changes in PC12 proteome which correspond to inhibition of cytokines: tumor necrosis factor (TNF) and transforming growth factor beta 1 (TGF-β1). We also found that the 12-h incubation with clozapine caused up-regulation of protein kinase A signaling and translation machinery. After 24 h of treatment with clozapine, the inhibition of the actin cytoskeleton signaling and Rho proteins signaling was revealed. The obtained results suggest that the mammalian target of rapamycin complex 1 (mTORC1) and 2 (mTORC2) play a central role in the signal transduction of clozapine.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 12.1-13
Author(s):  
E. Malmhäll-Bah ◽  
K. M. Andersson ◽  
M. C. Erlandsson ◽  
M. Brisslert ◽  
O. Khan ◽  
...  

Background:Deficiency in geranylgeranyltransferase type I (GGTase-I) results in accumulation of active Rho family proteins RhoA, Rac1 and Cdc42, responsible for cell communication and migration. We reported that mice with GGTase-I deficient macrophages (GLC mice) develop a spontaneous and age-dependent arthritis, reproducing pathology of RA [1].Objectives:We study how GGTase-I deficiency in Mø changes T cell phenotype to facilitate their translocation to joints and the development of arthritis.Methods:GLC mice were developed on a mixed genetic background (129Ola/Hsd-C57BL/6) by Cre-technology using LysM-promotor to knockout the Pggt1b gene in Mø[2]. CD4+ cells were isolated from spleen and lymph node (LN) of 16 weeks-old mice (GLC n=7, wt n=5) expected to have high prevalence of arthritis. RNA was extracted to measure expression of the Rho proteins and signature genes to characterize differences in Th-subtypes and migration abilities of CD4+ cells between GLC and wt mice. Furthermore, Illumina RNAseq analyzed the transcriptome of LN CD4+ cells. In a separate experiment we treated GLC mice with CTLA4-FP (n=12) or PBS (n=11) for 20 weeks from the age of 5 weeks. Rationale was to disrupt Mø/T cell contact to prevent arthritis. To study Rho-protein dependent phenotype in human RA, we performed RNAseq of sorted CD4+ cells of RA patients.Results:RNAseq showed that CD4+ cells in LN of GLC mice had IFN-γ dependent cytotoxic profile and upregulated numerous pro-inflammatory genes including Eomes, Cxcr3, Tigit, Tnfsf10, Il-1rl1, Stat1, Jak3, Irf7, Irf5, Ptpn13. Furthermore, the over-represented genes often depended on the IRF family in their transcription.GLC mice overexpressed Cdc42 and Rac1 in spleen CD4+ compared to wt (p=0.005 and p=0.048 resp.). Spleen GLC CD4+ cells had higher levels of α5β1 and α2β2 integrins, strongly correlating to Cdc42 (r= 0.61 p=0.0027 and r=0.50, p=0.018) and arthritis (r=0.64, p=0.0015 and r=0.69, p=0.0004). Importantly, Cdc42, Rac1, and RhoA were higher expressed in LN CD4+ compared to spleen (p=0.016, p=0.031 and p=0.016). In addition, Itgb1 coding for β1 integrin, was upregulated in GLC CD4+ cells of both spleen and LN (p=0.003 p=0.03, resp.), suggesting Rho proteins are important for migration of CD4+ cells to the joint draining LN and for arthritis development. CD4+ cells that migrated to the LN had high proportion of Foxp3+ cells. This also correlated to the expression of Itgb1 (r=0.84, p=0.0012) presenting a plausible mechanism for increased influx of Tregs into joints. Several observations are in favor of this notion. First, GLC mice expressed more Foxp3 in LN compared to spleen CD4+ cells (p=0.016). Second, transcription of Foxp3 in LN CD4+ cells was higher in GLC mice compared to wt (p=0.015). Third, this high Foxp3 coexisted with low transcription of Lef1 (p=0.03), required for Treg immunosuppression. Last, Foxp3 correlated negatively to both Lef1 (r=-0.72, p=0.017), and its cofactor Tcf1 (r=-0.75, p=0.01).CTLA4-FP reduced inflammation in GLC mice evident as lower IFN-γ, IL-6 and TNF-α production (p=0.0002, p<0.0001 and p<0.0001 resp.) and the number of CD25+CD4+cells in spleen (p=0.027). In contrast, we observed increased IL-17A production (p=0.056). However, CTLA4-FP treatment did not affect migration of CD4+ cells enriched with Rho-protein into draining LN nor alleviate arthritis.Similar to the GLC mice, CD4+ cells of RA patients with high expression of RhoA, Rac1 and Cdc42 demonstrated enrichment for Th1 signature genes including IFNG, TBX21, Eomes, IL2RA, IL2RB, IL12RB2, TNF, IL18RAP (all, adj. p<0.05).Conclusion:This study shows that accumulation of Rho-proteins in CD4+ cells results in pro-inflammatory IFN-γ dependent phenotype in mice and human RA. Accumulation of RhoA, Rac1 and Cdc42 proteins trigger the migration of CD4+ cells into joint draining LN and facilitates arthritis. Inhibiting Mø/T cell contact in GLC mice did not suffice to prevent migration of Rho-protein expressing cells and arthritisReferences:[1]Khan, O.M., et al. J Clin Invest, 2011. 121(2): p. 628-39.[2]Akula, M.K., et al. Nat Commun, 2019. 10(1): p. 3975.Disclosure of Interests:None declared


Toxins ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 151
Author(s):  
Julia Ebeling ◽  
Anne Fünfhaus ◽  
Elke Genersch

The Gram-positive, spore-forming bacterium Paenibacillus larvae is the etiological agent of American Foulbrood, a highly contagious and often fatal honey bee brood disease. The species P. larvae comprises five so-called ERIC-genotypes which differ in virulence and pathogenesis strategies. In the past two decades, the identification and characterization of several P. larvae virulence factors have led to considerable progress in understanding the molecular basis of pathogen-host-interactions during P. larvae infections. Among these virulence factors are three ADP-ribosylating AB-toxins, Plx1, Plx2, and C3larvin. Plx1 is a phage-born toxin highly homologous to the pierisin-like AB-toxins expressed by the whites-and-yellows family Pieridae (Lepidoptera, Insecta) and to scabin expressed by the plant pathogen Streptomyces scabiei. These toxins ADP-ribosylate DNA and thus induce apoptosis. While the presumed cellular target of Plx1 still awaits final experimental proof, the classification of the A subunits of the binary AB-toxins Plx2 and C3larvin as typical C3-like toxins, which ADP-ribosylate Rho-proteins, has been confirmed experimentally. Normally, C3-exoenzymes do not occur together with a B subunit partner, but as single domain toxins. Interestingly, the B subunits of the two P. larvae C3-like toxins are homologous to the B-subunits of C2-like toxins with striking structural similarity to the PA-63 protomer of Bacillus anthracis.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 66
Author(s):  
Rashmita Pradhan ◽  
Phuong A. Ngo ◽  
Luz d. C. Martínez-Sánchez ◽  
Markus F. Neurath ◽  
Rocío López-Posadas

Rho proteins operate as key regulators of the cytoskeleton, cell morphology and trafficking. Acting as molecular switches, the function of Rho GTPases is determined by guanosine triphosphate (GTP)/guanosine diphosphate (GDP) exchange and their lipidation via prenylation, allowing their binding to cellular membranes and the interaction with downstream effector proteins in close proximity to the membrane. A plethora of in vitro studies demonstrate the indispensable function of Rho proteins for cytoskeleton dynamics within different cell types. However, only in the last decades we have got access to genetically modified mouse models to decipher the intricate regulation between members of the Rho family within specific cell types in the complex in vivo situation. Translationally, alterations of the expression and/or function of Rho GTPases have been associated with several pathological conditions, such as inflammation and cancer. In the context of the GI tract, the continuous crosstalk between the host and the intestinal microbiota requires a tight regulation of the complex interaction between cellular components within the intestinal tissue. Recent studies demonstrate that Rho GTPases play important roles for the maintenance of tissue homeostasis in the gut. We will summarize the current knowledge on Rho protein function within individual cell types in the intestinal mucosa in vivo, with special focus on intestinal epithelial cells and T cells.


Author(s):  
Sarah Ötzkan ◽  
Walter E. Muller ◽  
W. Gibson Wood ◽  
Gunter P. Eckert

AbstractSynaptic impairment may be the main cause of cognitive dysfunction in brain aging that is probably due to a reduction in synaptic contact between the axonal buttons and dendritic spines. Rho proteins including the small GTPase Rac1 have become key regulators of neuronal morphogenesis that supports synaptic plasticity. Small Rho- and Ras-GTPases are post-translationally modified by the isoprenoids geranylgeranyl pyrophosphate (GGPP) and farnesyl pyrophosphate (FPP), respectively. For all GTPases, anchoring in the plasma membrane is essential for their activation by guanine nucleotide exchange factors (GEFs). Rac1-specific GEFs include the protein T lymphoma invasion and metastasis 1 (Tiam1). Tiam1 interacts with the TrkB receptor to mediate the brain-derived neurotrophic factor (BDNF)-induced activation of Rac1, resulting in cytoskeletal rearrangement and changes in cellular morphology. The flavonoid 7,8-dihydroxyflavone (7,8-DHF) acts as a highly affine-selective TrkB receptor agonist and causes the dimerization and autophosphorylation of the TrkB receptor and thus the activation of downstream signaling pathways. In the current study, we investigated the effects of 7,8-DHF on cerebral lipid isoprenoid and Rho protein levels in male C57BL/6 mice aged 3 and 23 months. Aged mice were daily treated with 100 mg/kg b.w. 7,8-DHF by oral gavage for 21 days. FPP, GGPP, and cholesterol levels were determined in brain tissue. In the same tissue, the protein content of Tiam1 and TrkB in was measured. The cellular localization of the small Rho-GTPase Rac1 and small Rab-GTPase Rab3A was studied in total brain homogenates and membrane preparations. We report the novel finding that 7,8-DHF restored levels of the Rho proteins Rac1 and Rab3A in membrane preparations isolated from brains of treated aged mice. The selective TrkB agonist 7,8-DHF did not affect BDNF and TrkB levels, but restored Tiam1 levels that were found to be reduced in brains of aged mice. FPP, GGPP, and cholesterol levels were significantly elevated in brains of aged mice but not changed by 7,8-DHF treatment. Hence, 7,8-DHF may be useful as pharmacological tool to treat age-related cognitive dysfunction although the underlying mechanisms need to be elucidated in detail.


Sign in / Sign up

Export Citation Format

Share Document