scholarly journals ELKS1 localizes the synaptic vesicle priming protein bMunc13-2 to a specific subset of active zones

2017 ◽  
Vol 216 (4) ◽  
pp. 1143-1161 ◽  
Author(s):  
Hiroshi Kawabe ◽  
Miso Mitkovski ◽  
Pascal S. Kaeser ◽  
Johannes Hirrlinger ◽  
Felipe Opazo ◽  
...  

Presynaptic active zones (AZs) are unique subcellular structures at neuronal synapses, which contain a network of specific proteins that control synaptic vesicle (SV) tethering, priming, and fusion. Munc13s are core AZ proteins with an essential function in SV priming. In hippocampal neurons, two different Munc13s—Munc13-1 and bMunc13-2—mediate opposite forms of presynaptic short-term plasticity and thus differentially affect neuronal network characteristics. We found that most presynapses of cortical and hippocampal neurons contain only Munc13-1, whereas ∼10% contain both Munc13-1 and bMunc13-2. Whereas the presynaptic recruitment and activation of Munc13-1 depends on Rab3-interacting proteins (RIMs), we demonstrate here that bMunc13-2 is recruited to synapses by the AZ protein ELKS1, but not ELKS2, and that this recruitment determines basal SV priming and short-term plasticity. Thus, synapse-specific interactions of different Munc13 isoforms with ELKS1 or RIMs are key determinants of the molecular and functional heterogeneity of presynaptic AZs.

2021 ◽  
Vol 118 (28) ◽  
pp. e2106621118
Author(s):  
Niklas Krick ◽  
Stefanie Ryglewski ◽  
Aylin Pichler ◽  
Arthur Bikbaev ◽  
Torsten Götz ◽  
...  

Synaptic vesicle (SV) release, recycling, and plastic changes of release probability co-occur side by side within nerve terminals and rely on local Ca2+ signals with different temporal and spatial profiles. The mechanisms that guarantee separate regulation of these vital presynaptic functions during action potential (AP)–triggered presynaptic Ca2+ entry remain unclear. Combining Drosophila genetics with electrophysiology and imaging reveals the localization of two different voltage-gated calcium channels at the presynaptic terminals of glutamatergic neuromuscular synapses (the Drosophila Cav2 homolog, Dmca1A or cacophony, and the Cav1 homolog, Dmca1D) but with spatial and functional separation. Cav2 within active zones is required for AP-triggered neurotransmitter release. By contrast, Cav1 localizes predominantly around active zones and contributes substantially to AP-evoked Ca2+ influx but has a small impact on release. Instead, L-type calcium currents through Cav1 fine-tune short-term plasticity and facilitate SV recycling. Separate control of SV exo- and endocytosis by AP-triggered presynaptic Ca2+ influx through different channels demands efficient measures to protect the neurotransmitter release machinery against Cav1-mediated Ca2+ influx. We show that the plasma membrane Ca2+ ATPase (PMCA) resides in between active zones and isolates Cav2-triggered release from Cav1-mediated dynamic regulation of recycling and short-term plasticity, two processes which Cav2 may also contribute to. As L-type Cav1 channels also localize next to PQ-type Cav2 channels within axon terminals of some central mammalian synapses, we propose that Cav2, Cav1, and PMCA act as a conserved functional triad that enables separate control of SV release and recycling rates in presynaptic terminals.


2007 ◽  
Vol 97 (1) ◽  
pp. 948-950 ◽  
Author(s):  
Jane M. Sullivan

Paired-pulse depression (PPD) is a form of short-term plasticity that plays a central role in processing of synaptic activity and is manifest as a decrease in the size of the response to the second of two closely timed stimuli. Despite mounting evidence to the contrary, PPD is still commonly thought to reflect depletion of the pool of synaptic vesicles available for release in response to the second stimulus. Here it is shown that PPD cannot be accounted for by depletion at excitatory synapses made by hippocampal neurons because PPD is unaffected by changes in the fraction of the readily releasable pool (RRP) released by the first of a pair of pulses.


2001 ◽  
Vol 21 (12) ◽  
pp. 4195-4206 ◽  
Author(s):  
Yann Humeau ◽  
Frédéric Doussau ◽  
Francesco Vitiello ◽  
Paul Greengard ◽  
Fabio Benfenati ◽  
...  

1998 ◽  
Vol 80 (4) ◽  
pp. 1765-1774 ◽  
Author(s):  
Dean V. Buonomano ◽  
Michael M. Merzenich

Buonomano, Dean V. and Michael M. Merzenich. Net interaction between different forms of short-term synaptic plasticity and slow-IPSPs in the hippocampus and auditory cortex. J. Neurophysiol. 80: 1765–1774, 1998. Paired-pulse plasticity is typically used to study the mechanisms underlying synaptic transmission and modulation. An important question relates to whether, under physiological conditions in which various opposing synaptic properties are acting in parallel, the net effect is facilitatory or depressive, that is, whether cells further or closer to threshold. For example, does the net sum of paired-pulse facilitation (PPF) of excitatory postsynaptic potentials (EPSPs), paired-pulse depression (PPD) of inhibitory postsynaptic potentials (IPSPs), and the hyperpolarizing slow IPSP result in depression or facilitation? Here we examine how different time-dependent properties act in parallel and examine the contribution of γ-aminobutyric acid-B (GABAB) receptors that mediate two opposing processes, the slow IPSP and PPD of the fast IPSP. Using intracellular recordings from rat CA3 hippocampal neurons and L-II/III auditory cortex neurons, we examined the postsynaptic responses to paired-pulse stimulation (with intervals between 50 and 400 ms) of the Schaffer collaterals and white matter, respectively. Changes in the amplitude, time-to-peak (TTP), and slope of each EPSP were analyzed before and after application of the GABAB antagonist CGP-55845. In both CA3 and L-II/III neurons the peak amplitude of the second EPSP was generally depressed (further from threshold) compared with the first at the longer intervals; however, these EPSPs were generally broader and exhibited a longer TTP that could result in facilitation by enhancing temporal summation. At the short intervals CA3 neurons exhibited facilitation of the peak EPSP amplitude in the absence and presence of CGP-55845. In contrast, on average L-II/III cells did not exhibit facilitation at any interval, in the absence or presence of CGP-55845. CGP-55845 generally “erased” short-term plasticity, equalizing the peak amplitude and TTP of the first and second EPSPs at longer intervals in the hippocampus and auditory cortex. These results show that it is necessary to consider all time-dependent properties to determine whether facilitation or depression will dominate under intact pharmacological conditions. Furthermore our results suggest that GABAB-dependent properties may be the major contributor to short-term plasticity on the time scale of a few hundred milliseconds and are consistent with the hypothesis that the balance of different time-dependent processes can modulate the state of networks in a complex manner and could contribute to the generation of temporally sensitive neural responses.


2017 ◽  
Vol 216 (4) ◽  
pp. 1205-1205 ◽  
Author(s):  
Hiroshi Kawabe ◽  
Miso Mitkovski ◽  
Pascal S. Kaeser ◽  
Johannes Hirrlinger ◽  
Felipe Opazo ◽  
...  

Neuron ◽  
2013 ◽  
Vol 79 (1) ◽  
pp. 82-96 ◽  
Author(s):  
Noa Lipstein ◽  
Takeshi Sakaba ◽  
Benjamin H. Cooper ◽  
Kun-Han Lin ◽  
Nicola Strenzke ◽  
...  

2018 ◽  
Vol 115 (24) ◽  
pp. E5605-E5613 ◽  
Author(s):  
Renhao Xue ◽  
David A. Ruhl ◽  
Joseph S. Briguglio ◽  
Alexander G. Figueroa ◽  
Robert A. Pearce ◽  
...  

Various forms of synaptic plasticity underlie aspects of learning and memory. Synaptic augmentation is a form of short-term plasticity characterized by synaptic enhancement that persists for seconds following specific patterns of stimulation. The mechanisms underlying this form of plasticity are unclear but are thought to involve residual presynaptic Ca2+. Here, we report that augmentation was reduced in cultured mouse hippocampal neurons lacking the Ca2+ sensor, Doc2; other forms of short-term enhancement were unaffected. Doc2 binds Ca2+ and munc13 and translocates to the plasma membrane to drive augmentation. The underlying mechanism was not associated with changes in readily releasable pool size or Ca2+ dynamics, but rather resulted from superpriming a subset of synaptic vesicles. Hence, Doc2 forms part of the Ca2+-sensing apparatus for synaptic augmentation via a mechanism that is molecularly distinct from other forms of short-term plasticity.


Synapse ◽  
2003 ◽  
Vol 50 (1) ◽  
pp. 41-52 ◽  
Author(s):  
Michael P. Kaplan ◽  
Karen S. Wilcox ◽  
Marc A. Dichter

HFSP Journal ◽  
2010 ◽  
Vol 4 (2) ◽  
pp. 72-84 ◽  
Author(s):  
Stefan Hallermann ◽  
Manfred Heckmann ◽  
Robert J. Kittel

Sign in / Sign up

Export Citation Format

Share Document