scholarly journals Myosin IIB assembly state determines its mechanosensitive dynamics

2019 ◽  
Vol 218 (3) ◽  
pp. 895-908 ◽  
Author(s):  
Eric S. Schiffhauer ◽  
Yixin Ren ◽  
Vicente A. Iglesias ◽  
Priyanka Kothari ◽  
Pablo A. Iglesias ◽  
...  

Dynamical cell shape changes require a highly sensitive cellular system that can respond to chemical and mechanical inputs. Myosin IIs are key players in the cell’s ability to react to mechanical inputs, demonstrating an ability to accumulate in response to applied stress. Here, we show that inputs that influence the ability of myosin II to assemble into filaments impact the ability of myosin to respond to stress in a predictable manner. Using mathematical modeling for Dictyostelium myosin II, we predict that myosin II mechanoresponsiveness will be biphasic with an optimum established by the percentage of myosin II assembled into bipolar filaments. In HeLa and NIH 3T3 cells, heavy chain phosphorylation of NMIIB by PKCζ, as well as expression of NMIIA, can control the ability of NMIIB to mechanorespond by influencing its assembly state. These data demonstrate that multiple inputs to the myosin II assembly state integrate at the level of myosin II to govern the cellular response to mechanical inputs.

2016 ◽  
Vol 212 (2) ◽  
pp. 219-229 ◽  
Author(s):  
Mo Weng ◽  
Eric Wieschaus

Although Snail is essential for disassembly of adherens junctions during epithelial–mesenchymal transitions (EMTs), loss of adherens junctions in Drosophila melanogaster gastrula is delayed until mesoderm is internalized, despite the early expression of Snail in that primordium. By combining live imaging and quantitative image analysis, we track the behavior of E-cadherin–rich junction clusters, demonstrating that in the early stages of gastrulation most subapical clusters in mesoderm not only persist, but move apically and enhance in density and total intensity. All three phenomena depend on myosin II and are temporally correlated with the pulses of actomyosin accumulation that drive initial cell shape changes during gastrulation. When contractile myosin is absent, the normal Snail expression in mesoderm, or ectopic Snail expression in ectoderm, is sufficient to drive early disassembly of junctions. In both cases, junctional disassembly can be blocked by simultaneous induction of myosin contractility. Our findings provide in vivo evidence for mechanosensitivity of cell–cell junctions and imply that myosin-mediated tension can prevent Snail-driven EMT.


Genetics ◽  
1998 ◽  
Vol 148 (4) ◽  
pp. 1845-1863
Author(s):  
Susan R Halsell ◽  
Daniel P Kiehart

Abstract Drosophila is an ideal metazoan model system for analyzing the role of nonmuscle myosin-II (henceforth, myosin) during development. In Drosophila, myosin function is required for cytokinesis and morphogenesis driven by cell migration and/or cell shape changes during oogenesis, embryogenesis, larval development and pupal metamorphosis. The mechanisms that regulate myosin function and the supramolecular structures into which myosin incorporates have not been systematically characterized. The genetic screens described here identify genomic regions that uncover loci that facilitate myosin function. The nonmuscle myosin heavy chain is encoded by a single locus, zipper. Contiguous chromosomal deficiencies that represent approximately 70% of the euchromatic genome were screened for genetic interactions with two recessive lethal alleles of zipper in a second-site noncomplementation assay for the malformed phenotype. Malformation in the adult leg reflects aberrations in cell shape changes driven by myosin-based contraction during leg morphogenesis. Of the 158 deficiencies tested, 47 behaved as second-site noncomplementors of zipper. Two of the deficiencies are strong interactors, 17 are intermediate and 28 are weak. Finer genetic mapping reveals that mutations in cytoplasmic tropomyosin and viking (collagen IV) behave as second-site noncomplementors of zipper during leg morphogenesis and that zipper function requires a previously uncharacterized locus, E3.10/J3.8, for leg morphogenesis and viability.


2018 ◽  
Vol 37 (23) ◽  
Author(s):  
Daniel Krueger ◽  
Pietro Tardivo ◽  
Congtin Nguyen ◽  
Stefano De Renzis

2015 ◽  
Vol 17 (4) ◽  
pp. 397-408 ◽  
Author(s):  
Emil Rozbicki ◽  
Manli Chuai ◽  
Antti I. Karjalainen ◽  
Feifei Song ◽  
Helen M. Sang ◽  
...  

2017 ◽  
Author(s):  
R Clément ◽  
C. Collinet ◽  
B. Dehapiot ◽  
T. Lecuit ◽  
P.-F. Lenne

Tissue morphogenesis relies on the production of active cellular forces. Understanding how such forces are mechanically converted into cell shape changes is essential to our understanding of morphogenesis. Here we use Myosin II pulsatile activity during Drosophila embryogenesis to study how transient forces generate irreversible cell shape changes. Analyzing the dynamics of junction shortening and elongation resulting from Myosin II pulses, we find that long pulses yield less reversible deformations, typically a signature of dissipative mechanics. This is consistent with a simple viscoelastic description, which we use to model individual shortening and elongation events. The model predicts that dissipation typically occurs on the minute timescale, a timescale commensurate with that of force generation by Myosin II pulses. We test this estimate by applying time-controlled forces on junctions with optical tweezers. Our results argue that active junctional deformation is stabilized by dissipation. Hence, tissue morphogenesis requires coordination between force generation and dissipation.


Sign in / Sign up

Export Citation Format

Share Document