scholarly journals Phospholipid ebb and flow makes mitochondria go

2020 ◽  
Vol 219 (8) ◽  
Author(s):  
Michelle Grace Acoba ◽  
Nanami Senoo ◽  
Steven M. Claypool

Mitochondria, so much more than just being energy factories, also have the capacity to synthesize macromolecules including phospholipids, particularly cardiolipin (CL) and phosphatidylethanolamine (PE). Phospholipids are vital constituents of mitochondrial membranes, impacting the plethora of functions performed by this organelle. Hence, the orchestrated movement of phospholipids to and from the mitochondrion is essential for cellular integrity. In this review, we capture recent advances in the field of mitochondrial phospholipid biosynthesis and trafficking, highlighting the significance of interorganellar communication, intramitochondrial contact sites, and lipid transfer proteins in maintaining membrane homeostasis. We then discuss the physiological functions of CL and PE, specifically how they associate with protein complexes in mitochondrial membranes to support bioenergetics and maintain mitochondrial architecture.

Contact ◽  
2020 ◽  
Vol 3 ◽  
pp. 251525642097958
Author(s):  
Neha Pratap Singh ◽  
Christian Vannier ◽  
Thierry Galli

Inter-organelle communication is essential for the exchange of cellular content in eukaryotes, particularly at membrane contact sites between the endoplasmic reticulum (ER) and the plasma membrane (PM). Accomplishing this critical task requires close positioning of the involved membranes via tether proteins and associated complexes. One such complex involves the SNAREs Sec22b and Syntaxin 1. Discovered to be interacting at the ER-PM membrane contact site (MCS), Sec22b-Stx1 forms a unique non-fusogenic bridge tethering the two membranes. Contrarily, SNAP25 was shown to be absent from the Sec22b-Stx1 complexes. Two recent studies focused on this interplay of SNARES and Lipid transfer proteins at MCSs. The Longin domain of Sec22b appeared to be the reason behind SNAP25’s exclusion from Sec22b-Stx1 assembly, and inclusion of E-Syts. It was also shown that yeast Sec9p and mammalian SNAP25 regulate ER-PM contact sites via their interaction with LTP OSBP-homologous proteins (ORP/OSH). In this following short review, we will take a closer look at the protein complexes involving SNAREs at MCSs and potential regulation by the Longin domain of Sec22b.


Author(s):  
C.A. Mannella ◽  
K.F. Buttle ◽  
K.A. O‘Farrell ◽  
A. Leith ◽  
M. Marko

Early transmission electron microscopy of plastic-embedded, thin-sectioned mitochondria indicated that there are numerous junctions between the outer and inner membranes of this organelle. More recent studies have suggested that the mitochondrial membrane contacts may be the site of protein complexes engaged in specialized functions, e.g., import of mitochondrial precursor proteins, adenine nucleotide channeling, and even intermembrane signalling. It has been suggested that the intermembrane contacts may be sites of membrane fusion involving non-bilayer lipid domains in the two membranes. However, despite growing interest in the nature and function of intramitochondrial contact sites, little is known about their structure.We are using electron microscopic tomography with the Albany HVEM to determine the internal organization of mitochondria. We have reconstructed a 0.6-μm section through an isolated, plasticembedded rat-liver mitochondrion by combining 123 projections collected by tilting (+/- 70°) around two perpendicular tilt axes. The resulting 3-D image has confirmed the basic inner-membrane organization inferred from lower-resolution reconstructions obtained from single-axis tomography.


Contact ◽  
2021 ◽  
Vol 4 ◽  
pp. 251525642110523
Author(s):  
Sarah D. Neuman ◽  
Amy T. Cavanagh ◽  
Arash Bashirullah

Nonvesicular transfer of lipids at membrane contact sites (MCS) has recently emerged as a critical process for cellular function. Lipid transfer proteins (LTPs) mediate this unique transport mechanism, and although several LTPs are known, the cellular complement of these proteins continues to expand. Our recent work has revealed the highly conserved but poorly characterized Hobbit/Hob proteins as novel, putative LTPs at endoplasmic reticulum-plasma membrane (ER-PM) contact sites. Using both S. cerevisiae and D. melanogaster model systems, we demonstrated that the Hob proteins localize to ER-PM contact sites via an N-terminal ER membrane anchor and conserved C-terminal sequences. These conserved C-terminal sequences bind to phosphoinositides (PIPs), and the distribution of PIPs is disrupted in hobbit mutant cells. Recently released structural models of the Hob proteins exhibit remarkable similarity to other bona fide LTPs, like VPS13A and ATG2, that function at MCS. Hobbit is required for viability in Drosophila, suggesting that the Hob proteins are essential genes that may mediate lipid transfer at MCS.


2020 ◽  
Vol 133 (18) ◽  
pp. jcs247148 ◽  
Author(s):  
Alessandra Gallo ◽  
Lydia Danglot ◽  
Francesca Giordano ◽  
Bailey Hewlett ◽  
Thomas Binz ◽  
...  

ABSTRACTAxons and dendrites are long and often ramified neurites that need particularly intense plasma membrane (PM) expansion during the development of the nervous system. Neurite growth depends on non-fusogenic Sec22b–Stx1 SNARE complexes at endoplasmic reticulum (ER)–PM contacts. Here, we show that Sec22b interacts with members of the extended synaptotagmin (E-Syt) family of ER lipid transfer proteins (LTPs), and this interaction depends on the longin domain of Sec22b. Overexpression of E-Syts stabilizes Sec22b–Stx1 association, whereas silencing of E-Syts has the opposite effect. Overexpression of wild-type E-Syt2, but not mutants unable to transfer lipids or attach to the ER, increase the formation of axonal filopodia and ramification of neurites in developing neurons. This effect is inhibited by a clostridial neurotoxin cleaving Stx1, and expression of the Sec22b longin domain and a Sec22b mutant with an extended linker between the SNARE and transmembrane domains. We conclude that Sec22b–Stx1 ER–PM contact sites contribute to PM expansion by interacting with LTPs, such as E-Syts.This article has an associated First Person interview with the first author of the paper.


2016 ◽  
Vol 44 (2) ◽  
pp. 517-527 ◽  
Author(s):  
Louise H. Wong ◽  
Tim P. Levine

Membrane contact sites are structures where two organelles come close together to regulate flow of material and information between them. One type of inter-organelle communication is lipid exchange, which must occur for membrane maintenance and in response to environmental and cellular stimuli. Soluble lipid transfer proteins have been extensively studied, but additional families of transfer proteins have been identified that are anchored into membranes by transmembrane helices so that they cannot diffuse through the cytosol to deliver lipids. If such proteins target membrane contact sites they may be major players in lipid metabolism. The eukaryotic family of so-called Lipid transfer proteins Anchored at Membrane contact sites (LAMs) all contain both a sterol-specific lipid transfer domain in the StARkin superfamily (related to StART/Bet_v1), and one or more transmembrane helices anchoring them in the endoplasmic reticulum (ER), making them interesting subjects for study in relation to sterol metabolism. They target a variety of membrane contact sites, including newly described contacts between organelles that were already known to make contact by other means. Lam1–4p target punctate ER–plasma membrane contacts. Lam5p and Lam6p target multiple contacts including a new category: vacuolar non-NVJ cytoplasmic ER (VancE) contacts. These developments confirm previous observations on tubular lipid-binding proteins (TULIPs) that established the importance of membrane anchored proteins for lipid traffic. However, the question remaining to be solved is the most difficult of all: are LAMs transporters, or alternately are they regulators that affect traffic more indirectly?


2019 ◽  
Author(s):  
Alessandra Gallo ◽  
Lydia Danglot ◽  
Francesca Giordano ◽  
Thomas Binz ◽  
Christian Vannier ◽  
...  

SummaryAxons and dendrites are long and often ramified neurites that need particularly intense plasma membrane (PM) expansion during the development of the nervous system. Neurite growth depends on non-fusogenic Sec22b–Stx1 SNARE complexes at endoplasmic reticulum (ER)-PM contacts. Here we show that Sec22b interacts with the endoplasmic reticulum lipid transfer proteins Extended-Synaptotagmins (E-Syts) and this interaction depends on the Longin domain of Sec22b. Overexpression of E-Syts stabilizes Sec22b-Stx1 association, whereas silencing of E-Syts has the opposite effect. Overexpression of wild-type E-Syt2, but not mutants unable to transfer lipids or attach to the ER, increase the formation of axonal filopodia and ramification of neurites in developing neurons. This effect is inhibited by a clostridial neurotoxin cleaving Stx1, expression of Sec22b Longin domain and a Sec22b mutant with extended linker between SNARE and transmembrane domains. We conclude that Sec22b-Stx1 ER-PM contact sites contribute to PM expansion by interacting with lipid transfer proteins such as E-Syts.


2019 ◽  
Vol 218 (3) ◽  
pp. 1055-1065 ◽  
Author(s):  
Rossella Venditti ◽  
Laura Rita Rega ◽  
Maria Chiara Masone ◽  
Michele Santoro ◽  
Elena Polishchuk ◽  
...  

ER–TGN contact sites (ERTGoCS) have been visualized by electron microscopy, but their location in the crowded perinuclear area has hampered their analysis via optical microscopy as well as their mechanistic study. To overcome these limits we developed a FRET-based approach and screened several candidates to search for molecular determinants of the ERTGoCS. These included the ER membrane proteins VAPA and VAPB and lipid transfer proteins possessing dual (ER and TGN) targeting motifs that have been hypothesized to contribute to the maintenance of ERTGoCS, such as the ceramide transfer protein CERT and several members of the oxysterol binding proteins. We found that VAP proteins, OSBP1, ORP9, and ORP10 are required, with OSBP1 playing a redundant role with ORP9, which does not involve its lipid transfer activity, and ORP10 being required due to its ability to transfer phosphatidylserine to the TGN. Our results indicate that both structural tethers and a proper lipid composition are needed for ERTGoCS integrity.


2020 ◽  
Vol 401 (6-7) ◽  
pp. 821-833
Author(s):  
Yasushi Tamura ◽  
Shin Kawano ◽  
Toshiya Endo

AbstractMitochondria are surrounded by the two membranes, the outer and inner membranes, whose lipid compositions are optimized for proper functions and structural organizations of mitochondria. Although a part of mitochondrial lipids including their characteristic lipids, phosphatidylethanolamine and cardiolipin, are synthesized within mitochondria, their precursor lipids and other lipids are transported from other organelles, mainly the ER. Mitochondrially synthesized lipids are re-distributed within mitochondria and to other organelles, as well. Recent studies pointed to the important roles of inter-organelle contact sites in lipid trafficking between different organelle membranes. Identification of Ups/PRELI proteins as lipid transfer proteins shuttling between the mitochondrial outer and inner membranes established a part of the molecular and structural basis of the still elusive intra-mitochondrial lipid trafficking.


Sign in / Sign up

Export Citation Format

Share Document