scholarly journals The interaction between non-fusogenic Sec22b-Stx complexes and Extended-Synaptotagmins promotes neurite growth and ramification

2019 ◽  
Author(s):  
Alessandra Gallo ◽  
Lydia Danglot ◽  
Francesca Giordano ◽  
Thomas Binz ◽  
Christian Vannier ◽  
...  

SummaryAxons and dendrites are long and often ramified neurites that need particularly intense plasma membrane (PM) expansion during the development of the nervous system. Neurite growth depends on non-fusogenic Sec22b–Stx1 SNARE complexes at endoplasmic reticulum (ER)-PM contacts. Here we show that Sec22b interacts with the endoplasmic reticulum lipid transfer proteins Extended-Synaptotagmins (E-Syts) and this interaction depends on the Longin domain of Sec22b. Overexpression of E-Syts stabilizes Sec22b-Stx1 association, whereas silencing of E-Syts has the opposite effect. Overexpression of wild-type E-Syt2, but not mutants unable to transfer lipids or attach to the ER, increase the formation of axonal filopodia and ramification of neurites in developing neurons. This effect is inhibited by a clostridial neurotoxin cleaving Stx1, expression of Sec22b Longin domain and a Sec22b mutant with extended linker between SNARE and transmembrane domains. We conclude that Sec22b-Stx1 ER-PM contact sites contribute to PM expansion by interacting with lipid transfer proteins such as E-Syts.

2020 ◽  
Vol 133 (18) ◽  
pp. jcs247148 ◽  
Author(s):  
Alessandra Gallo ◽  
Lydia Danglot ◽  
Francesca Giordano ◽  
Bailey Hewlett ◽  
Thomas Binz ◽  
...  

ABSTRACTAxons and dendrites are long and often ramified neurites that need particularly intense plasma membrane (PM) expansion during the development of the nervous system. Neurite growth depends on non-fusogenic Sec22b–Stx1 SNARE complexes at endoplasmic reticulum (ER)–PM contacts. Here, we show that Sec22b interacts with members of the extended synaptotagmin (E-Syt) family of ER lipid transfer proteins (LTPs), and this interaction depends on the longin domain of Sec22b. Overexpression of E-Syts stabilizes Sec22b–Stx1 association, whereas silencing of E-Syts has the opposite effect. Overexpression of wild-type E-Syt2, but not mutants unable to transfer lipids or attach to the ER, increase the formation of axonal filopodia and ramification of neurites in developing neurons. This effect is inhibited by a clostridial neurotoxin cleaving Stx1, and expression of the Sec22b longin domain and a Sec22b mutant with an extended linker between the SNARE and transmembrane domains. We conclude that Sec22b–Stx1 ER–PM contact sites contribute to PM expansion by interacting with LTPs, such as E-Syts.This article has an associated First Person interview with the first author of the paper.


Author(s):  
Juan Martín D’Ambrosio ◽  
Véronique Albanèse ◽  
Nicolas-Frédéric Lipp ◽  
Lucile Fleuriot ◽  
Delphine Debayle ◽  
...  

AbstractOsh6 and Osh7 are lipid transfer proteins (LTPs) that move phosphatidylserine (PS) from the endoplasmic reticulum (ER) to the plasma membrane (PM). High PS level at the PM is key for many cellular functions. Intriguingly, Osh6/7 localize to ER-PM contact sites, although they lack membrane-targeting motifs, in contrast to multidomain LTPs that both bridge membranes and convey lipids. We show that Osh6 localization to contact sites depends on its interaction with the cytosolic tail of the ER-PM tether Ist2, a homologue of TMEM16 proteins. We identify a motif in the Ist2 tail, conserved in yeasts, as the Osh6-binding region, and we map an Ist2-binding surface on Osh6. Mutations in the Ist2 tail phenocopy osh6Δ osh7Δ deletion: they decrease cellular PS levels, and block PS transport to the PM. Our study unveils an unexpected partnership between a TMEM16-like protein and a soluble LTP, which together mediate lipid transport at contact sites.


2021 ◽  
Author(s):  
Valentin Guyard ◽  
Vera F Monteiro-Cardoso ◽  
Mohyeddine Omrane ◽  
Cecile Sauvanet ◽  
Audrey Houcine ◽  
...  

Lipid droplets (LDs) are the primary organelles of lipid storage, buffering energy fluctuations of the cell. They store neutral lipids in their core that is surrounded by a protein-decorated phospholipid monolayer. LDs arise from the Endoplasmic Reticulum (ER). The ER-protein seipin, localizing at ER-LD junctions, controls LD nucleation and growth. However, how LD biogenesis is spatially and temporally coordinated remains elusive. Here, we show that the lipid transfer proteins ORP5 and ORP8 control LD biogenesis at Mitochondria-Associated ER Membrane (MAM) subdomains, enriched in phosphatidic acid. We found that ORP5/8 regulate seipin recruitment to these MAM-LD contacts, and their loss impairs LD biogenesis. Importantly, the integrity of ER-mitochondria contact sites is crucial for the ORP5/8 function in regulating seipin-mediated LD biogenesis. Our study uncovers an unprecedented ORP5/8 role in orchestrating LD biogenesis at MAMs and brings novel insights into the metabolic crosstalk between mitochondria, ER, and LDs at membrane contact sites.


2018 ◽  
Vol 46 (2) ◽  
pp. 437-452 ◽  
Author(s):  
Francesca Giordano

Mitochondria are highly dynamic organelles involved in various cellular processes such as energy production, regulation of calcium homeostasis, lipid trafficking, and apoptosis. To fulfill all these functions and preserve their morphology and dynamic behavior, mitochondria need to maintain a defined protein and lipid composition in both their membranes. The maintenance of mitochondrial membrane identity requires a selective and regulated transport of specific lipids from/to the endoplasmic reticulum (ER) and across the mitochondria outer and inner membranes. Since they are not integrated in the classical vesicular trafficking routes, mitochondria exchange lipids with the ER at sites of close apposition called membrane contact sites. Deregulation of such transport activities results in several pathologies including cancer and neurodegenerative disorders. However, we are just starting to understand the function of ER–mitochondria contact sites in lipid transport, what are the proteins involved and how they are regulated. In this review, we summarize recent insights into lipid transport pathways at the ER–mitochondria interface and discuss the implication of recently identified lipid transfer proteins in these processes.


Contact ◽  
2021 ◽  
Vol 4 ◽  
pp. 251525642110523
Author(s):  
Sarah D. Neuman ◽  
Amy T. Cavanagh ◽  
Arash Bashirullah

Nonvesicular transfer of lipids at membrane contact sites (MCS) has recently emerged as a critical process for cellular function. Lipid transfer proteins (LTPs) mediate this unique transport mechanism, and although several LTPs are known, the cellular complement of these proteins continues to expand. Our recent work has revealed the highly conserved but poorly characterized Hobbit/Hob proteins as novel, putative LTPs at endoplasmic reticulum-plasma membrane (ER-PM) contact sites. Using both S. cerevisiae and D. melanogaster model systems, we demonstrated that the Hob proteins localize to ER-PM contact sites via an N-terminal ER membrane anchor and conserved C-terminal sequences. These conserved C-terminal sequences bind to phosphoinositides (PIPs), and the distribution of PIPs is disrupted in hobbit mutant cells. Recently released structural models of the Hob proteins exhibit remarkable similarity to other bona fide LTPs, like VPS13A and ATG2, that function at MCS. Hobbit is required for viability in Drosophila, suggesting that the Hob proteins are essential genes that may mediate lipid transfer at MCS.


2020 ◽  
Author(s):  
Bishal Basak ◽  
Harini Krishnan ◽  
Padinjat Raghu

Abstract During phospholipase C-β (PLC-β) signalling in Drosophila photoreceptors, the phosphatidylinositol transfer protein (PITP) RDGB, is required for lipid transfer at endoplasmic reticulum (ER)-plasma membrane (PM) contact sites (MCS). Depletion of RDGB or its mis-localization away from the ER-PM MCS results in multiple defects in photoreceptor function. Previously, the interaction between the FFAT motif of RDGB and the integral ER protein dVAP-A was shown to be essential for accurate localization to ER-PM MCS. Here, we report that the FFAT/dVAP-A interaction alone is insufficient to localize RDGB accurately; this also requires the function of the C-terminal domains, DDHD and LNS2. Mutations in each of these domains results in mis-localization of RDGB leading to loss of function. While the LNS2 domain is necessary, it is not sufficient for the correct localization of RDGB, which also requires the C-terminal DDHD domain. The function of the DDHD domain is mediated through an intramolecular interaction with the LNS2 domain. Thus, interactions between the additional domains in a multi-domain PITP together lead to accurate localization at the MCS and signalling function.


Author(s):  
Saeko Aoyama-Ishiwatari ◽  
Yusuke Hirabayashi

It has become apparent that our textbook illustration of singular isolated organelles is obsolete. In reality, organelles form complex cooperative networks involving various types of organelles. Light microscopic and ultrastructural studies have revealed that mitochondria–endoplasmic reticulum (ER) contact sites (MERCSs) are abundant in various tissues and cell types. Indeed, MERCSs have been proposed to play critical roles in various biochemical and signaling functions such as Ca2+ homeostasis, lipid transfer, and regulation of organelle dynamics. While numerous proteins involved in these MERCS-dependent functions have been reported, how they coordinate and cooperate with each other has not yet been elucidated. In this review, we summarize the functions of mammalian proteins that localize at MERCSs and regulate their formation. We also discuss potential roles of the MERCS proteins in regulating multiple organelle contacts.


Science ◽  
2020 ◽  
Vol 369 (6508) ◽  
pp. eaaz7714 ◽  
Author(s):  
Justyna Sawa-Makarska ◽  
Verena Baumann ◽  
Nicolas Coudevylle ◽  
Sören von Bülow ◽  
Veronika Nogellova ◽  
...  

Autophagosomes form de novo in a manner that is incompletely understood. Particularly enigmatic are autophagy-related protein 9 (Atg9)–containing vesicles that are required for autophagy machinery assembly but do not supply the bulk of the autophagosomal membrane. In this study, we reconstituted autophagosome nucleation using recombinant components from yeast. We found that Atg9 proteoliposomes first recruited the phosphatidylinositol 3-phosphate kinase complex, followed by Atg21, the Atg2-Atg18 lipid transfer complex, and the E3-like Atg12–Atg5-Atg16 complex, which promoted Atg8 lipidation. Furthermore, we found that Atg2 could transfer lipids for Atg8 lipidation. In selective autophagy, these reactions could potentially be coupled to the cargo via the Atg19-Atg11-Atg9 interactions. We thus propose that Atg9 vesicles form seeds that establish membrane contact sites to initiate lipid transfer from compartments such as the endoplasmic reticulum.


2016 ◽  
Vol 44 (2) ◽  
pp. 517-527 ◽  
Author(s):  
Louise H. Wong ◽  
Tim P. Levine

Membrane contact sites are structures where two organelles come close together to regulate flow of material and information between them. One type of inter-organelle communication is lipid exchange, which must occur for membrane maintenance and in response to environmental and cellular stimuli. Soluble lipid transfer proteins have been extensively studied, but additional families of transfer proteins have been identified that are anchored into membranes by transmembrane helices so that they cannot diffuse through the cytosol to deliver lipids. If such proteins target membrane contact sites they may be major players in lipid metabolism. The eukaryotic family of so-called Lipid transfer proteins Anchored at Membrane contact sites (LAMs) all contain both a sterol-specific lipid transfer domain in the StARkin superfamily (related to StART/Bet_v1), and one or more transmembrane helices anchoring them in the endoplasmic reticulum (ER), making them interesting subjects for study in relation to sterol metabolism. They target a variety of membrane contact sites, including newly described contacts between organelles that were already known to make contact by other means. Lam1–4p target punctate ER–plasma membrane contacts. Lam5p and Lam6p target multiple contacts including a new category: vacuolar non-NVJ cytoplasmic ER (VancE) contacts. These developments confirm previous observations on tubular lipid-binding proteins (TULIPs) that established the importance of membrane anchored proteins for lipid traffic. However, the question remaining to be solved is the most difficult of all: are LAMs transporters, or alternately are they regulators that affect traffic more indirectly?


Sign in / Sign up

Export Citation Format

Share Document