Phase separation and toxicity of C9orf72 poly(PR) depends on alternate distribution of arginine

2021 ◽  
Vol 220 (11) ◽  
Author(s):  
Chen Chen ◽  
Yoshiaki Yamanaka ◽  
Koji Ueda ◽  
Peiying Li ◽  
Tamami Miyagi ◽  
...  

Arg (R)-rich dipeptide repeat proteins (DPRs; poly(PR): Pro-Arg and poly(GR): Gly-Arg), encoded by a hexanucleotide expansion in the C9ORF72 gene, induce neurodegeneration in amyotrophic lateral sclerosis (ALS). Although R-rich DPRs undergo liquid–liquid phase separation (LLPS), which affects multiple biological processes, mechanisms underlying LLPS of DPRs remain elusive. Here, using in silico, in vitro, and in cellulo methods, we determined that the distribution of charged Arg residues regulates the complex coacervation with anionic peptides and nucleic acids. Proteomic analyses revealed that alternate Arg distribution in poly(PR) facilitates entrapment of proteins with acidic motifs via LLPS. Transcription, translation, and diffusion of nucleolar nucleophosmin (NPM1) were impaired by poly(PR) with an alternate charge distribution but not by poly(PR) variants with a consecutive charge distribution. We propose that the pathogenicity of R-rich DPRs is mediated by disturbance of proteins through entrapment in the phase-separated droplets via sequence-controlled multivalent protein–protein interactions.

2019 ◽  
Author(s):  
Richard J. Wheeler ◽  
Hyun O. Lee ◽  
Ina Poser ◽  
Arun Pal ◽  
Thom Doeleman ◽  
...  

AbstractAmyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with few avenues for treatment. Many proteins implicated in ALS associate with stress granules, which are examples of liquid-like compartments formed by phase separation. Aberrant phase transition of stress granules has been implicated in disease, suggesting that modulation of phase transitions could be a possible therapeutic route. Here, we combine cell-based and protein-based screens to show that lipoamide, and its related compound lipoic acid, reduce the propensity of stress granule proteins to aggregate in vitro. More significantly, they also prevented aggregation of proteins over the life time of Caenorhabditis elegans. Observations that they prevent dieback of ALS patient-derived (FUS mutant) motor neuron axons in culture and recover motor defects in Drosophila melanogaster expressing FUS mutants suggest plausibility as effective therapeutics. Our results suggest that altering phase behaviour of stress granule proteins in the cytoplasm could be a novel route to treat ALS.


2021 ◽  
Author(s):  
Nikolaj Riis Christensen ◽  
Christian Parsbæk Pedersen ◽  
Vita Sereikaite ◽  
Jannik Nedergaard Pedersen ◽  
Maria Vistrup-Parry ◽  
...  

SUMMARYThe organization of the postsynaptic density (PSD), a protein-dense semi-membraneless organelle, is mediated by numerous specific protein-protein interactions (PPIs) which constitute a functional post-synapse. Postsynaptic density protein 95 (PSD-95) interacts with a manifold of proteins, including the C-terminal of transmembrane AMPA receptor (AMAPR) regulatory proteins (TARPs). Here, we uncover the minimal essential peptide responsible for the stargazin (TARP-γ2) mediated liquid-liquid phase separation (LLPS) formation of PSD-95 and other key protein constituents of the PSD. Furthermore, we find that pharmacological inhibitors of PSD-95 can facilitate formation of LLPS. We found that in some cases LLPS formation is dependent on multivalent interactions while in other cases short peptides carrying a high charge are sufficient to promote LLPS in complex systems. This study offers a new perspective on PSD-95 interactions and their role in LLPS formation, while also considering the role of affinity over multivalency in LLPS systems.


Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4705
Author(s):  
Adiran Garaizar ◽  
Ignacio Sanchez-Burgos ◽  
Rosana Collepardo-Guevara ◽  
Jorge R. Espinosa

Proteins containing intrinsically disordered regions (IDRs) are ubiquitous within biomolecular condensates, which are liquid-like compartments within cells formed through liquid–liquid phase separation (LLPS). The sequence of amino acids of a protein encodes its phase behaviour, not only by establishing the patterning and chemical nature (e.g., hydrophobic, polar, charged) of the various binding sites that facilitate multivalent interactions, but also by dictating the protein conformational dynamics. Besides behaving as random coils, IDRs can exhibit a wide-range of structural behaviours, including conformational switching, where they transition between alternate conformational ensembles. Using Molecular Dynamics simulations of a minimal coarse-grained model for IDRs, we show that the role of protein conformation has a non-trivial effect in the liquid–liquid phase behaviour of IDRs. When an IDR transitions to a conformational ensemble enriched in disordered extended states, LLPS is enhanced. In contrast, IDRs that switch to ensembles that preferentially sample more compact and structured states show inhibited LLPS. This occurs because extended and disordered protein conformations facilitate LLPS-stabilising multivalent protein–protein interactions by reducing steric hindrance; thereby, such conformations maximize the molecular connectivity of the condensed liquid network. Extended protein configurations promote phase separation regardless of whether LLPS is driven by homotypic and/or heterotypic protein–protein interactions. This study sheds light on the link between the dynamic conformational plasticity of IDRs and their liquid–liquid phase behaviour.


2021 ◽  
Author(s):  
Nikolaj Riis Christensen ◽  
Christian Parsbæk Pedersen ◽  
Vita Sereikaite ◽  
Jannik Nedergaard Pedersen ◽  
Maria Vistrup-Parry ◽  
...  

2019 ◽  
Author(s):  
Amandeep Girdhar ◽  
Vidhya Bharathi ◽  
Vikas Ramyagya Tiwari ◽  
Suman Abhishek ◽  
Usha Saraswat Mahawar ◽  
...  

AbstractTDP-43 is an RNA/DNA-binding protein of versatile physiological functions and it is also implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS) disease in addition to several other implicated proteins such as mutant SOD1 and FUS etc. Cytoplasmic mis-localization, liquid-liquid phase separation (LLPS) due to RNA depletion and aggregation of TDP-43 are suggested to be important TDP-43-toxicity causing mechanisms for the ALS manifestation. So far, therapeutic options for ALS are extremely minimal and ineffective therefore, multi-faceted approaches such as treating the oxidative stress and inhibiting the TDP-43’s aggregation are being actively pursued. In our recent study, an acridine imidazolium derivative compound, AIM4, has been identified to have anti-TDP-43 aggregation propensity however, its mechanism of inhibition is not deciphered. In this study, we have utilized computational methods to examine binding site(s) of AIM4 in the TDP-43 structure and have also compared its binding efficiency with several other relevant compounds. We find that AIM4 has a binding site in the C-terminal amyloidogenic core region of amino acids aa: 288-319, which coincides with one of the key residue motifs that could potentially mediate liquid-liquid phase separation (LLPS) of TDP-43. Importantly, alike to the previously reported effects exerted by RNA molecules, we found that AIM4 could also inhibit the in vitro LLPS of a recombinantly purified C-terminal fragment TDP-432C bearing an A315T familial mutation. Antagonistic effects of AIM4 towards LLPS which is believed as the precursor process to the TDP-43’s aggregation and the in silico prediction of a binding site of AIM4 on TDP-43 occurring in the same region, assert that AIM4 could be an important molecule for further investigations on TDP-43’s anti-aggregation effects with relevance to the ALS pathogenesis.


2021 ◽  
Author(s):  
Paolo M. Marchi ◽  
Lara Marrone ◽  
Laurent Brasseur ◽  
Luc Bousset ◽  
Christopher P. Webster ◽  
...  

Dipeptide repeat proteins (DPRs) are aggregation-prone polypeptides encoded by the pathogenic G4C2 repeat expansion in the C9orf72 gene, the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). In this study, we focus on the role of poly-GA DPRs in disease spread. We demonstrate that recombinant poly-GA oligomers can directly convert into solid-like aggregates and form characteristic β-sheet fibrils in vitro. To dissect the process of cell-to-cell DPR transmission, we closely follow the fate of poly-GA DPRs in either their oligomeric or fibrillized form after administration in the cell culture medium. We observe that poly-GA DPRs are taken up via dynamin-dependent and -independent endocytosis, eventually converging at the lysosomal compartment and leading to axonal swellings in neurons. We then use a co-culture system to demonstrate astrocyte-to-motor neuron DPR propagation, showing that astrocytes may internalise and release aberrant peptides in disease pathogenesis. Overall, our results shed light on the mechanisms of poly-GA cellular uptake and cell-to-cell propagation, suggesting lysosomal impairment as a possible feature underlying the cellular pathogenicity of these DPR species.


2019 ◽  
Author(s):  
Alexander E. Conicella ◽  
Gregory L. Dignon ◽  
Gül H. Zerze ◽  
Hermann Broder Schmidt ◽  
Alexandra M. D’Ordine ◽  
...  

AbstractLiquid-liquid phase separation (LLPS) is involved in the formation of membraneless organelles (MLOs) associated with RNA processing. Present in several MLOs, TDP-43 undergoes LLPS and is linked to the pathogenesis of amyotrophic lateral sclerosis (ALS). While some disease variants of TDP-43 disrupt self-interaction and function, here we show that designed single mutations can enhance TDP-43 assembly and function via modulating helical structure. Using molecular simulation and NMR spectroscopy, we observe large structural changes in a dimeric TDP-43. Two conserved glycine residues (G335 and G338) are potent inhibitors of helical extension and helix-helix interaction, which are removed in part by variants including the ALS-associated G335D. Substitution to helix-enhancing alanine at either of these positions dramatically enhances phase separation in vitro and decreases fluidity of phase separated TDP-43 reporter compartments in cells. Furthermore, G335A increases TDP-43 splicing function in a mini-gene assay. Therefore, TDP-43 helical region serves as a short but uniquely tunable module that shows promise as for controlling assembly and function in cellular and synthetic biology applications of LLPS.


2009 ◽  
Vol 184 (2) ◽  
pp. 297-308 ◽  
Author(s):  
Gerald R.V. Hammond ◽  
Yirong Sim ◽  
Leon Lagnado ◽  
Robin F. Irvine

Polyphosphoinositol lipids convey spatial information partly by their interactions with cellular proteins within defined domains. However, these interactions are prevented when the lipids' head groups are masked by the recruitment of cytosolic effector proteins, whereas these effectors must also have sufficient mobility to maximize functional interactions. To investigate quantitatively how these conflicting functional needs are optimized, we used different fluorescence recovery after photobleaching techniques to investigate inositol lipid–effector protein kinetics in terms of the real-time dissociation from, and diffusion within, the plasma membrane. We find that the protein–lipid complexes retain a relatively rapid (∼0.1–1 µm2/s) diffusion coefficient in the membrane, likely dominated by protein–protein interactions, but the limited time scale (seconds) of these complexes, dictated principally by lipid–protein interactions, limits their range of action to a few microns. Moreover, our data reveal that GAP1IP4BP, a protein that binds PtdIns(4,5)P2 and PtdIns(3,4,5)P3 in vitro with similar affinity, is able to “read” PtdIns(3,4,5)P3 signals in terms of an elongated residence time at the membrane.


Sign in / Sign up

Export Citation Format

Share Document