cell propagation
Recently Published Documents


TOTAL DOCUMENTS

129
(FIVE YEARS 39)

H-INDEX

25
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Armin Bayati ◽  
Emily Banks ◽  
Chanshuai Han ◽  
Wen Luo ◽  
Cornelia Zorca ◽  
...  

The nervous system spread of alpha-synuclein fibrils leads to Parkinson′s disease (PD) and other synucleinopathies, yet the mechanisms underlying internalization and cell-to-cell transfer are enigmatic. Here we use confocal and superresolution microscopy, subcellular fractionation and electron microscopy of immunogold labelled alpha-synuclein pre-formed fibrils (PFF) to demonstrate that this toxic protein species enters cells using a novel form of ultra-rapid macropinocytosis with transfer to lysosomes in as little as 2 minutes, an unprecedented cell biological kinetic for lysosomal targeting. PFF uptake circumvents classical endosomal pathways and is independent of clathrin. Immunogold-labelled PFF are seen at the highly curved inward edge of membrane ruffles, in newly formed macropinosomes, and in lysosomes. While many of the fibrils remain in lysosomes that continue to take up PFF for hours, a portion are transferred to neighboring naive cells on the external face of vesicles, likely exosomes. These data indicate that PFF uses a novel internalization mechanism as a component of cell-to-cell propagation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yutaro Iizuka ◽  
Ryuji Owada ◽  
Takayasu Kawasaki ◽  
Fumio Hayashi ◽  
Masashi Sonoyama ◽  
...  

AbstractIn polyalanine (PA) diseases, the disease-causing transcription factors contain an expansion of alanine repeats. While aggregated proteins that are responsible for the pathogenesis of neurodegenerative disorders show cell-to-cell propagation and thereby exert toxic effects on the recipient cells, whether this is also the case with expanded PA has not been studied. It is also not known whether the internalized PA is toxic to recipient cells based on the degree of aggregation. In this study, we therefore prepared different degrees of aggregation of a peptide having 13 alanine repeats without flanking sequences of PA disease-causative proteins (13A). The aggregated 13A was spontaneously taken up by neuron-like cultured cells. Functionally, strong aggregates but not weak aggregates displayed a deficit in neuron-like differentiation in vitro. Moreover, the injection of strong but not weak 13A aggregates into the ventricle of mice during the neonatal stage led to enhanced spontaneous motor activity later in life. Thus, PA in the extracellular space has the potential to enter adjacent cells, and may exert toxicity depending on the degree of aggregation.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Mingzhi Han ◽  
Yanfei Sun

AbstractGlioblastoma (GBM) is the most aggressive brain tumor of the central nervous system. Recent studies have reported the crucial functions of Tripartite Motif Containing 24 (TRIM24) in promoting cancer progression of GBM. However, it remains unclear if TRIM24 is an attractive druggable target for therapeutic intervention in GBM. We therefore performed a series of experiments, aiming to verify whether specific TRIM24 inhibition suppresses GBM malignant functions using dTRIM24 and IACS-9571, two novel selective TRIM24 antagonists. Our data showed that TRIM24 inhibitors serve as effective agents for inhibiting cell propagation and invasion of several patient-derived GBM stem cells (GSCs), and these effects are mediated partially through suppression of the TRIM24-SOX2 axis. This study provides novel insight into the TRIM24-based druggable dependencies, important for developing effective therapeutic strategies for brain tumors.


2021 ◽  
Author(s):  
Christoph G Gäbelein ◽  
Qian Feng ◽  
Edin Sarajlic ◽  
Tomaso Zambelli ◽  
Orane Guillaume-Gentil ◽  
...  

Mitochondria and the complex endomembrane system are hallmarks of eukaryotic cells. To date, it has been difficult to manipulate organelle structures within single live cells. We developed a FluidFM-based approach to extract, inject and transplant organelles from and into living cells with subcellular spatial resolution. The approach enabled the transfer of controlled quantities of mitochondria into cells while maintaining their viability and monitoring their fate in new host cells. Transplantation of healthy and drug-impaired mitochondria into primary keratinocytes allowed real-time tracking of mitochondrial subpopulation rescue. Fusion with the mitochondrial network of recipient cells occurred 20 min after transplantation and continued for over 16 hours. After transfer of mitochondria and cell propagation over generations, we show that donor mtDNA was replicated in recipient cells without the need for selection pressure. The approach opens new prospects for the study of organelle physiology and homeostasis, but also for mechanobiology, synthetic biology, and therapy.


2021 ◽  
Author(s):  
Paolo M. Marchi ◽  
Lara Marrone ◽  
Laurent Brasseur ◽  
Luc Bousset ◽  
Christopher P. Webster ◽  
...  

Dipeptide repeat proteins (DPRs) are aggregation-prone polypeptides encoded by the pathogenic G4C2 repeat expansion in the C9orf72 gene, the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). In this study, we focus on the role of poly-GA DPRs in disease spread. We demonstrate that recombinant poly-GA oligomers can directly convert into solid-like aggregates and form characteristic β-sheet fibrils in vitro. To dissect the process of cell-to-cell DPR transmission, we closely follow the fate of poly-GA DPRs in either their oligomeric or fibrillized form after administration in the cell culture medium. We observe that poly-GA DPRs are taken up via dynamin-dependent and -independent endocytosis, eventually converging at the lysosomal compartment and leading to axonal swellings in neurons. We then use a co-culture system to demonstrate astrocyte-to-motor neuron DPR propagation, showing that astrocytes may internalise and release aberrant peptides in disease pathogenesis. Overall, our results shed light on the mechanisms of poly-GA cellular uptake and cell-to-cell propagation, suggesting lysosomal impairment as a possible feature underlying the cellular pathogenicity of these DPR species.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Takahito Ohshiro ◽  
Masamitsu Konno ◽  
Ayumu Asai ◽  
Yuki Komoto ◽  
Akira Yamagata ◽  
...  

AbstractEpitranscriptomics is the study of RNA base modifications involving functionally relevant changes to the transcriptome. In recent years, epitranscriptomics has been an active area of research. However, a major issue has been the development of sequencing methods to map transcriptome-wide RNA base modifications. We have proposed a single-molecule quantum sequencer for mapping RNA base modifications in microRNAs (miRNAs), such as N6-methyladenosine (m6A) or 5-methylcytidine (5mC), which are related to cancer cell propagation and suppression. Here, we investigated 5mC and m6A in hsa-miR-200c-5p extracted from colorectal cancer cells and determined their methylation sites and rates; the data were comparable to those determined by mass spectrometry. Furthermore, we evaluated the methylation ratio of cytidine and adenosine at each site in the sequences and its relationship. These results suggest that the methylation ratio of cytidine and adenosine is facilitated by the presence of vicinal methylation. Our work provides a robust new tool for sequencing various types of RNA base modifications in their RNA context.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Hiroki Yamamoto ◽  
Yuki Fukasawa ◽  
Yu Shoji ◽  
Shumpei Hisamoto ◽  
Tomohiro Kikuchi ◽  
...  

Abstract Background Bacteria have been reported to exhibit complicated morphological colony patterns on solid media, depending on intracellular, and extracellular factors such as motility, cell propagation, and cell-cell interaction. We isolated the filamentous cyanobacterium, Pseudanabaena sp. NIES-4403 (Pseudanabaena, hereafter), that forms scattered (discrete) migrating colonies on solid media. While the scattered colony pattern has been observed in some bacterial species, the mechanism underlying such a pattern still remains obscure. Results We studied the morphology of Pseudanabaena migrating collectively and found that this species forms randomly scattered clusters varying in size and further consists of a mixture of comet-like wandering clusters and disk-like rotating clusters. Quantitative analysis of the formation of these wandering and rotating clusters showed that bacterial filaments tend to follow trajectories of previously migrating filaments at velocities that are dependent on filament length. Collisions between filaments occurred without crossing paths, which enhanced their nematic alignments, giving rise to bundle-like colonies. As cells increased and bundles aggregated, comet-like wandering clusters developed. The direction and velocity of the movement of cells in comet-like wandering clusters were highly coordinated. When the wandering clusters entered into a circular orbit, they turned into rotating clusters, maintaining a more stable location. Disk-like rotating clusters may rotate for days, and the speed of cells within a rotating cluster increases from the center to the outmost part of the cluster. Using a mathematical modeling with simplified assumption we reproduced some features of the scattered pattern including migrating clusters. Conclusion Based on these observations, we propose that Pseudanabaena forms scattered migrating colonies that undergo a series of transitions involving several morphological patterns. A simplified model is able to reproduce some features of the observed migrating clusters.


2021 ◽  
Author(s):  
Tae-Kyung Kim ◽  
Eun-Jin Bae ◽  
Byung Chul Jung ◽  
Minsun Choi ◽  
Soo-Jean Shin ◽  
...  

Abstract The clinical progression of neurodegenerative diseases correlates with the spread of proteinopathy in the brain. Understanding of the mechanism of the proteinopathy spread is far from complete. Here, we propose that inflammation is fundamental to proteinopathy spread. A sequence variant of α-synuclein (V40G) was much less capable of fibril formation than wild-type α-synuclein (WT-syn) and, when mixed with WT-syn, interfered with its fibrillation. Yet when V40G was injected intracerebrally into mice, it induced aggregate spreading even more effectively than WT-syn. The aggregate spreading was preceded by sustained microgliosis and inflammatory responses, which were more robust with V40G than with WT-syn. Oral administration of an anti-inflammatory agent suppressed aggregate spreading, inflammation, and behavioral deficits in mice. Furthermore, exposure of cells to inflammatory cytokines increased the cell-to-cell propagation of α-synuclein. These results suggest that the inflammatory microenvironment is the major driver of the spread of synucleinopathy in the brain.


Author(s):  
Nathaniel J. Hart ◽  
Craig Weber ◽  
Nicholas Price ◽  
Alma Banuelos ◽  
Madison Schultz ◽  
...  

The islets of Langerhans of the pancreas are the primary endocrine organ responsible for regulating whole body glucose homeostasis. The use of isolated primary islets for research development and training requires organ resection, careful digestion and isolation of the islets from non-endocrine tissue. This process is time consuming, expensive and requires substantial expertise. For these reasons, we sought to develop a more rapidly obtainable and consistent model system with characteristic islet morphology and function that could be employed to train personnel and better inform experiments prior to using isolated rodent and human islets. Immortalized β cell lines reflect several aspects of primary β cells, but cell propagation in monolayer cell culture limits their usefulness in several areas of research which depend on islet morphology and/or functional assessment. In this manuscript we describe the propagation and characterization of insulinoma pseudo-islets (IPIs) from a rat insulinoma cell line INS832/3. IPIs were generated with an average diameter of 200 μm, consistent with general islet morphology. The rates of oxygen consumption and mitochondrial oxidation-reduction changes in response to glucose and metabolic modulators were similar to isolated rat islets. In addition, the dynamic insulin secretory patterns of IPIs were similar to primary rat islets. Thus, INS832/3-derived IPIs provide a valuable and convenient model for accelerating islet and diabetes research.


Sign in / Sign up

Export Citation Format

Share Document