scholarly journals Ensuring that yeast cells get their inheritance

2013 ◽  
Vol 203 (2) ◽  
pp. 167-167
Author(s):  
Mitch Leslie

A nucleoporin allows nuclear pore complexes access to daughter cell during mitosis.

1997 ◽  
Vol 136 (6) ◽  
pp. 1185-1199 ◽  
Author(s):  
Mirella Bucci ◽  
Susan R. Wente

While much is known about the role of nuclear pore complexes (NPCs) in nucleocytoplasmic transport, the mechanism of NPC assembly into pores formed through the double lipid bilayer of the nuclear envelope is not well defined. To investigate the dynamics of NPCs, we developed a live-cell assay in the yeast Saccharomyces cerevisiae. The nucleoporin Nup49p was fused to the green fluorescent protein (GFP) of Aequorea victoria and expressed in nup49 null haploid yeast cells. When the GFP–Nup49p donor cell was mated with a recipient cell harboring only unlabeled Nup49p, the nuclei fused as a consequence of the normal mating process. By monitoring the distribution of the GFP–Nup49p, we could assess whether NPCs were able to move from the donor section of the nuclear envelope to that of the recipient nucleus. We observed that fluorescent NPCs moved and encircled the entire nucleus within 25 min after fusion. When assays were done in mutant kar1-1 strains, where nuclear fusion does not occur, GFP–Nup49p appearance in the recipient nucleus occurred at a very slow rate, presumably due to new NPC biogenesis or to exchange of GFP– Nup49p into existing recipient NPCs. Interestingly, in a number of existing mutant strains, NPCs are clustered together at permissive growth temperatures. This has been explained with two different hypotheses: by movement of NPCs through the double nuclear membranes with subsequent clustering at a central location; or, alternatively, by assembly of all NPCs at a central location (such as the spindle pole body) with NPCs in mutant cells unable to move away from this point. Using the GFP–Nup49p system with a mutant in the NPCassociated factor Gle2p that exhibits formation of NPC clusters only at 37°C, it was possible to distinguish between these two models for NPC dynamics. GFP– Nup49p-labeled NPCs, assembled at 23°C, moved into clusters when the cells were shifted to growth at 37°C. These results indicate that NPCs can move through the double nuclear membranes and, moreover, can do so to form NPC clusters in mutant strains. Such clusters may result by releasing NPCs from a nuclear tether, or by disappearance of a protein that normally prevents pore aggregation. This system represents a novel approach for identifying regulators of NPC assembly and movement in the future.


2021 ◽  
Author(s):  
Anne C Meinema ◽  
Theo Aspert ◽  
Sung Sik Lee ◽  
Gilles Charvin ◽  
Yves Barral

The nuclear pore complex (NPC) mediates nearly all exchanges between nucleus and cytoplasm, and changes composition in many species as the organism ages. However, how these changes arise and whether they contribute themselves to aging is poorly understood. We show that in replicatively aging yeast cells attachment of DNA circles to NPCs drives the displacement of the NPCs’ nuclear basket and cytoplasmic complexes. Remodeling of the NPC resulted from the regulation of basket components by SAGA, rather than from damages. These changes affected NPC interaction with mRNA export factors, without affecting the residence of import factors or engaging the NPC quality control machinery. Mutations preventing NPC remodeling extended the replicative lifespan of the cells. Thus, our data indicate that DNA circles accumulating in the mother cell drive aging at least in part by triggering NPC specialization. We suggest that antagonistic pleiotropic effects of NPC specialization are key drivers of aging.


2018 ◽  
Vol 20 (4) ◽  
pp. 432-442 ◽  
Author(s):  
Arun Kumar ◽  
Priyanka Sharma ◽  
Mercè Gomar-Alba ◽  
Zhanna Shcheprova ◽  
Anne Daulny ◽  
...  

2014 ◽  
Vol 204 (4) ◽  
pp. 523-539 ◽  
Author(s):  
Jingjing Chen ◽  
Christine J. Smoyer ◽  
Brian D. Slaughter ◽  
Jay R. Unruh ◽  
Sue L. Jaspersen

In closed mitotic systems such as Saccharomyces cerevisiae, nuclear pore complexes (NPCs) and the spindle pole body (SPB) must assemble into an intact nuclear envelope (NE). Ndc1 is a highly conserved integral membrane protein involved in insertion of both complexes. In this study, we show that Ndc1 interacts with the SUN domain–containing protein Mps3 on the NE in live yeast cells using fluorescence cross-correlation spectroscopy. Genetic and molecular analysis of a series of new ndc1 alleles allowed us to understand the role of Ndc1–Mps3 binding at the NE. We show that the ndc1-L562S allele is unable to associate specifically with Mps3 and find that this mutant is lethal due to a defect in SPB duplication. Unlike other ndc1 alleles, the growth and Mps3 binding defect of ndc1-L562S is fully suppressed by deletion of POM152, which encodes a NPC component. Based on our data we propose that the Ndc1–Mps3 interaction is important for controlling the distribution of Ndc1 between the NPC and SPB.


1992 ◽  
Vol 119 (4) ◽  
pp. 705-723 ◽  
Author(s):  
S R Wente ◽  
M P Rout ◽  
G Blobel

We have identified a novel family of yeast nuclear pore complex proteins. Three individual members of this family, NUP49, NUP100, and NUP116, have been isolated and then characterized by a combination of molecular genetics and immunolocalization. Employing immunoelectron and immunofluorescence microscopy on yeast cells, we found that the binding of a polyspecific monoclonal antibody recognizing this family was predominantly at the nuclear pore complexes. Furthermore, the tagging of NUP49 with a unique epitope enabled the immunolocalization of this protein to the nuclear pore complex by both fluorescence and electron microscopy. DNA sequence analysis has shown that the amino-terminal regions of NUP49, NUP100, and NUP116 share repeated "GLFG" motifs separated from each other by glutamine, asparagine, serine and threonine rich spacers. All three proteins lack a repetitive domain found in the two precisely described yeast nuclear pore complex proteins. Only NUP49 is essential for cell viability. NUP116-deficient cells grow very slowly and are temperature sensitive, whereas the lack of NUP100 has no detectable phenotype. NUP100 and NUP116 are homologous over their entire lengths. Interestingly, NUP100 and NUP116 are both flanked by a histidine tRNA gene and a transposon element suggesting that they may have arisen by gene duplication. We propose that subfamilies of pore complex proteins can be defined by their characteristic combinations of different modular domains.


2013 ◽  
Vol 203 (2) ◽  
pp. 187-196 ◽  
Author(s):  
Tadashi Makio ◽  
Diego L. Lapetina ◽  
Richard W. Wozniak

In the yeast Saccharomyces cerevisiae, organelles and macromolecular complexes are delivered from the mother to the emerging daughter during cell division, thereby ensuring progeny viability. Here, we have shown that during mitosis nuclear pore complexes (NPCs) in the mother nucleus are actively delivered through the bud neck and into the daughter cell concomitantly with the nuclear envelope. Furthermore, we show that NPC movement into the daughter cell requires members of an NPC subcomplex containing Nsp1p and its interacting partners. NPCs lacking these nucleoporins (Nups) were blocked from entry into the daughter by a putative barrier at the bud neck. This selection process could be observed within individual cells such that NPCs containing Nup82p (an Nsp1p-interacting Nup) were transferred to the daughter cells while functionally compromised NPCs lacking Nup82p were retained in the mother. This mechanism is proposed to facilitate the inheritance of functional NPCs by daughter cells.


2017 ◽  
Author(s):  
Arun Kumar ◽  
Priyanka Sharma ◽  
Zhanna Shcheprova ◽  
Anne Daulny ◽  
Trinidad Sanmartín ◽  
...  

SummaryThe acquisition of cellular identity is coupled to changes in the nuclear periphery and nuclear pore complexes (NPCs). Whether and how these changes determine cell fate remains unclear. We have uncovered a mechanism regulating NPC acetylation to direct cell fate after asymmetric division in budding yeast. The lysine deacetylase Hos3 associates specifically with daughter cell NPCs during mitosis to delay cell cycle entry (Start). Hos3-dependent deacetylation of nuclear basket and central channel nucleoporins establishes daughter cell-specific nuclear accumulation of the transcriptional repressor Whi5 during anaphase and perinuclear silencing of the CLN2 gene in the following G1 phase. Hos3-dependent coordination of both events restrains Start in daughter but not in mother cells. We propose that deacetylation modulates transport-dependent and - independent functions of NPCs, leading to differential cell cycle progression in mother and daughter cells. Similar mechanisms might regulate NPC functions in specific cell types and/or cell cycle stages in multicellular organisms.


Author(s):  
Brian Burke

The nuclear envelope is a complex membrane structure that forms the boundary of the nuclear compartment in eukaryotes. It regulates the passage of macromolecules between the two compartments and may be important for organizing interphase chromosome architecture. In interphase animal cells it forms a remarkably stable structure consisting of a double membrane ouerlying a protein meshwork or lamina and penetrated by nuclear pore complexes. The latter form the channels for nucleocytoplasmic exchange of macromolecules, At the onset of mitosis, however, it rapidly disassembles, the membranes fragment to yield small vesicles and the lamina, which is composed of predominantly three polypeptides, lamins R, B and C (MW approx. 74, 68 and 65 kDa respectiuely), breaks down. Lamins B and C are dispersed as monomers throughout the mitotic cytoplasm, while lamin B remains associated with the nuclear membrane vesicles.


2000 ◽  
Vol 36 ◽  
pp. 75-88 ◽  
Author(s):  
Michael P. Rout ◽  
John D. Aitchison

Sign in / Sign up

Export Citation Format

Share Document