replicative lifespan
Recently Published Documents


TOTAL DOCUMENTS

149
(FIVE YEARS 50)

H-INDEX

26
(FIVE YEARS 4)

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 32-33
Author(s):  
Alaattin Kaya

Abstract To understand the genetic basis and the selective forces acting on longevity, it is useful to employ ecologically diverse individuals of the same species, widely different in lifespan. This way, we may capture the experiment of Nature that modifies the genotype arriving at different lifespans. Here, we analyzed 76 ecologically diverse wild yeast isolates and discovered wide diversity of lifespan. We sequenced the genomes of these organisms and analyzed how their replicative lifespan is shaped by nutrients and transcriptional and metabolite patterns. By identifying genes, proteins and metabolites that correlate with longevity across these isolates, we found that long-lived strains elevate intermediary metabolites, differentially regulate genes involved in NAD metabolism and adjust control of epigenetic landscape through conserved, rare histone modifier. Our data further offer insights into the evolution and mechanisms by which caloric restriction regulates lifespan by modulating the availability of nutrients without decreasing fitness.


2021 ◽  
Author(s):  
Chuankai Zhou ◽  
Qingqing Liu ◽  
Catherine E. Chang ◽  
Alexandra C. Wooldredge ◽  
Benjamin Fong ◽  
...  

Mitochondrial biogenesis has two major steps: the transcriptional activation of nuclear genome-encoded mitochondrial proteins and the import of nascent mitochondrial proteins that are synthesized in the cytosol. These nascent mitochondrial proteins are aggregation-prone and can cause cytosolic proteostasis stress. The transcription factor-dependent transcriptional regulations and the TOM-TIM complex-dependent import of nascent mitochondrial proteins have been extensively studied. Yet, little is known regarding how these two steps of mitochondrial biogenesis coordinate with each other to avoid the cytosolic accumulation of these aggregation-prone nascent mitochondrial proteins. Here we show that in budding yeast, Tom70, a conserved receptor of the TOM complex, moonlights to regulate the transcriptional activity of mitochondrial proteins. Tom70's transcription regulatory role is conserved in Drosophila. The dual roles of Tom70 in both transcription/biogenesis and import of mitochondrial proteins allow the cells to accomplish mitochondrial biogenesis without compromising cytosolic proteostasis. The age-related reduction of Tom70, caused by reduced biogenesis and increased degradation of Tom70, is associated with the loss of mitochondrial membrane potential, mtDNA, and mitochondrial proteins. While loss of Tom70 accelerates aging and age-related mitochondrial defects, overexpressing TOM70 delays these mitochondrial dysfunctions and extends the replicative lifespan. Our results reveal unexpected roles of Tom70 in mitochondrial biogenesis and aging.


Author(s):  
Melanie Kovacs ◽  
Florian Geltinger ◽  
Thomas Verwanger ◽  
Richard Weiss ◽  
Klaus Richter ◽  
...  

Besides their role as a storage for neutral lipids and sterols, there is increasing evidence that lipid droplets (LDs) are involved in cellular detoxification. LDs are in close contact to a broad variety of organelles where protein- and lipid exchange is mediated. Mitochondria as a main driver of the aging process produce reactive oxygen species (ROS), which damage several cellular components. LDs as highly dynamic organelles mediate a potent detoxification mechanism by taking up toxic lipids and proteins. A stimulation of LDs induced by the simultaneously overexpression of Lro1p and Dga1p (both encoding acyltransferases) prolongs the chronological as well as the replicative lifespan of yeast cells. The increased number of LDs reduces mitochondrial fragmentation as well as mitochondrial ROS production, both phenotypes that are signs of aging. Strains with an altered LD content or morphology as in the sei1∆ or lro1∆ mutant lead to a reduced replicative lifespan. In a yeast strain defective for the LON protease Pim1p, which showed an enhanced ROS production, increased doubling time and an altered mitochondrial morphology, a LRO1 overexpression resulted in a partially reversion of this “premature aging” phenotype.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Alaattin Kaya ◽  
Cheryl Zi Jin Phua ◽  
Mitchell Lee ◽  
Lu Wang ◽  
Alexander Tyshkovskiy ◽  
...  

To understand the genetic basis and selective forces acting on longevity, it is useful to examine lifespan variation among closely related species, or ecologically diverse isolates of the same species, within a controlled environment. In particular, this approach may lead to understanding mechanisms underlying natural variation in lifespan. Here, we analyzed 76 ecologically diverse wild yeast isolates and discovered a wide diversity of replicative lifespan. Phylogenetic analyses pointed to genes and environmental factors that strongly interact to modulate the observed aging patterns. We then identified genetic networks causally associated with natural variation in replicative lifespan across wild yeast isolates, as well as genes, metabolites and pathways, many of which have never been associated with yeast lifespan in laboratory settings. In addition, a combined analysis of lifespan-associated metabolic and transcriptomic changes revealed unique adaptations to interconnected amino acid biosynthesis, glutamate metabolism and mitochondrial function in long-lived strains. Overall, our multi-omic and lifespan analyses across diverse isolates of the same species shows how gene-environment interactions shape cellular processes involved in phenotypic variation such as lifespan.


2021 ◽  
Author(s):  
Richard Campion ◽  
Leanne Bloxam ◽  
Kimberley Burrow ◽  
Philip Brownridge ◽  
Daniel Pentland ◽  
...  

Dietary restriction (DR) has been shown to increase lifespan in organisms ranging from yeast to mammals. This suggests that the underlying mechanisms may be evolutionarily conserved. Indeed, upstream signalling pathways, such as TOR, are strongly linked to DR-induced longevity in various organisms. However, the downstream effector proteins that ultimately mediate lifespan extension are less clear. To shed light on this, we used a proteomic approach on budding yeast. Our reasoning was that analysis of proteome-wide changes in response to DR might enable the identification of proteins that mediate its physiological effects, including replicative lifespan extension. Of over 2500 proteins we identified by liquid chromatography-mass spectrometry, 183 were significantly altered in expression by at least 3-fold in response to DR. Most of these proteins were mitochondrial and/or had clear links to respiration and metabolism. Indeed, direct analysis of oxygen consumption confirmed that mitochondrial respiration was increased several-fold in response to DR. In addition, several key proteins involved in mating, including Ste2 and Ste6, were downregulated by DR. Consistent with this, shmoo formation in response to α-factor pheromone was reduced by DR, thus confirming the inhibitory effect of DR on yeast mating. Finally, we found that Hsp26, a member of the conserved small heat shock protein (sHSP) family, was upregulated by DR and that overexpression of Hsp26 extended yeast replicative lifespan. As overexpression of sHSPs in Caenorhabditis elegans and Drosophila has previously been shown to extend lifespan, our data on yeast Hsp26 suggest that sHSPs may be universally conserved effectors of longevity.


2021 ◽  
Author(s):  
Théo Aspert ◽  
Didier Hentsch ◽  
Gilles Charvin

AbstractAutomating the extraction of meaningful temporal information from sequences of microscopy images represents a major challenge to characterize dynamical biological processes. Here, we have developed DetecDiv, a microfluidic-based image acquisition platform combined with deep learning-based software for high-throughput single-cell division tracking. DetecDiv can reconstruct cellular replicative lifespans with an outstanding accuracy and provides comprehensive temporal cellular metrics using timeseries classification and image semantic segmentation.


2021 ◽  
Vol 22 (5) ◽  
pp. 547-563
Author(s):  
Wei Zhao ◽  
Fang Guo ◽  
Lingyue Kong ◽  
Jiaxin Liu ◽  
Xiaoshan Hong ◽  
...  

GeroScience ◽  
2021 ◽  
Author(s):  
Mitchell B. Lee ◽  
Michael G. Kiflezghi ◽  
Mitsuhiro Tsuchiya ◽  
Brian Wasko ◽  
Daniel T. Carr ◽  
...  

2021 ◽  
Author(s):  
Anne C Meinema ◽  
Theo Aspert ◽  
Sung Sik Lee ◽  
Gilles Charvin ◽  
Yves Barral

The nuclear pore complex (NPC) mediates nearly all exchanges between nucleus and cytoplasm, and changes composition in many species as the organism ages. However, how these changes arise and whether they contribute themselves to aging is poorly understood. We show that in replicatively aging yeast cells attachment of DNA circles to NPCs drives the displacement of the NPCs’ nuclear basket and cytoplasmic complexes. Remodeling of the NPC resulted from the regulation of basket components by SAGA, rather than from damages. These changes affected NPC interaction with mRNA export factors, without affecting the residence of import factors or engaging the NPC quality control machinery. Mutations preventing NPC remodeling extended the replicative lifespan of the cells. Thus, our data indicate that DNA circles accumulating in the mother cell drive aging at least in part by triggering NPC specialization. We suggest that antagonistic pleiotropic effects of NPC specialization are key drivers of aging.


Sign in / Sign up

Export Citation Format

Share Document