asymmetric division
Recently Published Documents


TOTAL DOCUMENTS

346
(FIVE YEARS 45)

H-INDEX

54
(FIVE YEARS 3)

Author(s):  
Tanja Schuster ◽  
Hartmut Geiger

Septins were first described in yeast. Due to extensive research in non-yeast cells, Septins are now recognized across all species as important players in the regulation of the cytoskeleton, in the establishment of polarity, for migration, vesicular trafficking and scaffolding. Stem cells are primarily quiescent cells, and this actively maintained quiescent state is critical for proper stem cell function. Equally important though, stem cells undergo symmetric or asymmetric division, which is likely linked to the level of symmetry found in the mother stem cell. Due to the ability to organize barriers and be able to break symmetry in cells, Septins are thought to have a significant impact on organizing quiescence as well as the mode (symmetric vs asymmetric) of stem cell division to affect self-renewal versus differentiation. Mechanisms of regulating mammalian quiescence and symmetry breaking by Septins are though still somewhat elusive. Within this overview article, we summarize current knowledge on the role of Septins in stem cells ranging from yeast to mice especially with respect to quiescence and asymmetric division, with a special focus on hematopoietic stem cells.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yanhua Zhang ◽  
Xiaochen Zhang ◽  
Huanshuo Cui ◽  
Xinzhu Ma ◽  
Guipeng Hu ◽  
...  

Chloroplasts evolved from a free-living cyanobacterium through endosymbiosis. Similar to bacterial cell division, chloroplasts replicate by binary fission, which is controlled by the Minicell (Min) system through confining FtsZ ring formation at the mid-chloroplast division site. MinD, one of the most important members of the Min system, regulates the placement of the division site in plants and works cooperatively with MinE, ARC3, and MCD1. The loss of MinD function results in the asymmetric division of chloroplasts. In this study, we isolated one large dumbbell-shaped and asymmetric division chloroplast Arabidopsis mutant Chloroplast Division Mutant 75 (cdm75) that contains a missense mutation, changing the arginine at residue 49 to a histidine (R49H), and this mutant point is located in the N-terminal Conserved Terrestrial Sequence (NCTS) motif of AtMinD1, which is only typically found in terrestrial plants. This study provides sufficient evidence to prove that residues 1–49 of AtMinD1 are transferred into the chloroplast, and that the R49H mutation does not affect the function of the AtMinD1 chloroplast transit peptide. Subsequently, we showed that the point mutation of R49H could remove the punctate structure caused by residues 1–62 of the AtMinD1 sequence in the chloroplast, suggesting that the arginine in residue 49 (Arg49) is essential for localizing the punctate structure of AtMinD11–62 on the chloroplast envelope. Unexpectedly, we found that AtMinD1 could interact directly with ARC6, and that the R49H mutation could prevent not only the previously observed interaction between AtMinD1 and MCD1 but also the interaction between AtMinD1 and ARC6. Thus, we believe that these results show that the AtMinD1 NCTS motif is required for their protein interaction. Collectively, our results show that AtMinD1 can guide the placement of the division site to the mid chloroplast through its direct interaction with ARC6 and reveal the important role of AtMinD1 in regulating the AtMinD1-ARC6 interaction.


2021 ◽  
Author(s):  
Marisa Connell ◽  
Yonggang Xie ◽  
Rui Chen ◽  
Sijun Zhu

During asymmetric division of Drosophila neuroblasts, the fate determinant Prospero and its adaptor Miranda are segregated to the basal cortex through aPKC phosphorylation of Miranda and displacement from the apical cortex. Here we identify Kin17 as a novel regulator of Miranda localization during asymmetric cell division and loss of Kin17 or Protein Phosphatase 4 leads to aberrant localization of Miranda to the centrosome and cytoplasm and Prospero to the centrosome and nucleus. We report that dephosphorylation of Mira by Protein Phosphatase 4 at Serine-96 at the centrosome is required for the proper basal localization of Mira after being phosphorylated at the apical cortex. We further demonstrate that Kin17 regulates Miranda localization by promoting splicing of the transcript of a PP4 component Falafel. Taken together, our work reveals a novel mechanism that ensures proper basal localization of Miranda by preventing its aberrant localization to the centrosome during the asymmetric division.


Author(s):  
Hanifah Aini ◽  
Yoshikatsu Sato ◽  
Kakishi Uno ◽  
Tetsuya Higashiyama ◽  
Takashi Okamoto

2021 ◽  
Author(s):  
Yuan‐Jing Zou ◽  
Meng‐Meng Shan ◽  
Hong‐Hui Wang ◽  
Zhen‐Nan Pan ◽  
Meng‐Hao Pan ◽  
...  

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Suqi Zou ◽  
Bing Hu

AbstractWhether mature oligodendrocytes (mOLs) participate in remyelination has been disputed for several decades. Recently, some studies have shown that mOLs participate in remyelination by producing new sheaths. However, whether mOLs can produce new oligodendrocytes by asymmetric division has not been proven. Zebrafish is a perfect model to research remyelination compared to other species. In this study, optic nerve crushing did not induce local mOLs death. After optic nerve transplantation from olig2:eGFP fish to AB/WT fish, olig2+ cells from the donor settled and rewrapped axons in the recipient. After identifying these rewrapping olig2+ cells as mOLs at 3 months posttransplantation, in vivo imaging showed that olig2+ cells proliferated. Additionally, in vivo imaging of new olig2+ cell division from mOLs was also captured within the retina. Finally, fine visual function was renewed after the remyelination program was completed. In conclusion, our in vivo imaging results showed that new olig2+ cells were born from mOLs by asymmetric division in adult zebrafish, which highlights the role of mOLs in the progression of remyelination in the mammalian CNS.


EMBO Reports ◽  
2021 ◽  
Author(s):  
Hélène Bouvrais ◽  
Laurent Chesneau ◽  
Yann Le Cunff ◽  
Danielle Fairbrass ◽  
Nina Soler ◽  
...  

2021 ◽  
Author(s):  
Rajesh Ranjan ◽  
Jonathan Snedeker ◽  
Matthew Wooten ◽  
Carolina Chu ◽  
Sabrina Bracero ◽  
...  

AbstractStem cells undergo asymmetric division to produce both a self-renewing stem cell and a differentiating daughter cell. DuringDrosophilamale germline stem cell (GSC) asymmetric division, preexisting old histones H3 and H4 are enriched in the self-renewed stem daughter cell, whereas the newly synthesized H3 and H4 are enriched in the differentiating daughter cell. However, the biological consequences in the two daughter cells resulting from asymmetric histone inheritance remained to be elucidated. In this work, we track both old and new histones throughout GSC cell cycle using high spatial and temporal resolution microscopy. We find several unique features differentiating old versus new histone-enriched sister chromatids, including nucleosome density, chromosomal condensation, and H3 Ser10 phosphorylation. These distinct chromosomal features lead to their differential association with Cdc6, an essential component of the pre-replication complex, which subsequently contributes to asynchronous initiation of DNA replication in the two resulting daughter cells. Disruption of asymmetric histone inheritance abolishes both differential Cdc6 association and asynchronous S-phase entry, demonstrating that asymmetric histone acts upstream of these critical events during cell cycle progression. Furthermore, GSC defects are detected under these conditions, indicating a connection between histone inheritance, cell cycle progression and cell fate decision. Together, these studies reveal that cell cycle remodeling as a crucial biological ‘readout’ of asymmetric histone inheritance, which precedes and could lead to other well-known readouts such as differential gene expression. This work also enhances our understanding of asymmetric histone inheritance and epigenetic regulation in other stem cells or asymmetrically dividing cells in multicellular organisms.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Da-Wei Lin ◽  
Yang Liu ◽  
Yue-Qi Lee ◽  
Po-Jiun Yang ◽  
Chia-Tse Ho ◽  
...  

AbstractThe design principle of establishing an intracellular protein gradient for asymmetric cell division is a long-standing fundamental question. While the major molecular players and their interactions have been elucidated via genetic approaches, the diversity and redundancy of natural systems complicate the extraction of critical underlying features. Here, we take a synthetic cell biology approach to construct intracellular asymmetry and asymmetric division in Escherichia coli, in which division is normally symmetric. We demonstrate that the oligomeric PopZ from Caulobacter crescentus can serve as a robust polarized scaffold to functionalize RNA polymerase. Furthermore, by using another oligomeric pole-targeting DivIVA from Bacillus subtilis, the newly synthesized protein can be constrained to further establish intracellular asymmetry, leading to asymmetric division and differentiation. Our findings suggest that the coupled oligomerization and restriction in diffusion may be a strategy for generating a spatial gradient for asymmetric cell division.


Sign in / Sign up

Export Citation Format

Share Document