scholarly journals DIFFERENTIATION OF ENDOPLASMIC RETICULUM IN HEPATOCYTES

1971 ◽  
Vol 49 (2) ◽  
pp. 288-302 ◽  
Author(s):  
A. Leskes ◽  
P. Siekevitz ◽  
G. E. Palade

Electron microscope cytochemical localization of glucose-6-phosphatase in the developing hepatocytes of fetal and newborn rats indicates that the enzyme appears simultaneously in all the rough endoplasmic reticulum of a cell, although asynchronously within the hepatocyte population as a whole. To confirm that the pattern of cytochemical deposits reflects the actual distribution of enzyme sites, a method to subfractionate rough endoplasmic reticulum was developed. The procedure is based on the retention of the cytochemical reaction product (precipitated lead phosphate) within freshly prepared rough microsomes reacted in vitro with glucose-6-phosphate and lead ions. Lead phosphate increases the density of the microsomes which have glucose-6-phosphatase activity and thereby makes possible their separation from microsomes lacking the enzyme; separation is obtained by isopycnic centrifugation on a two-step density gradient. The procedure was applied to rough microsomes isolated from rats at several stages during hepatocyte differentiation and the results obtained agree with those given by cytochemical studies in situ. Before birth, when only some of the cells react positively for glucose-6-phosphatase, only a commensurate proportion of the rough microsome fraction can be rendered dense by the enzyme reaction. At the time of birth and in the adult, when all cells react positively, practically all microsomes acquire deposit and become dense after reaction. Thus, the results of the microsome subfractionation confirm the cytochemical findings; the enzyme is evenly distributed throughout all the endoplasmic reticulum of a cell and there is no regional differentiation within the rough endoplasmic reticulum with respect to glucose-6-phosphatase. These findings suggest that new components are inserted molecule-by-molecule into a pre-existing structural framework. The membranes are thus mosaics of old and new molecules and do not contain large regions of entirely "new" membrane in which all of the components are newly synthesized or newly assembled.

1972 ◽  
Vol 52 (2) ◽  
pp. 231-245 ◽  
Author(s):  
Colvin M. Redman ◽  
M. George Cherian

These studies compare the secretory pathways of newly formed rat serum glycoproteins and albumin by studying their submicrosomal localization at early times after the beginning of their synthesis and also by determining the submicrosomal site of incorporation of N-acetylglucosamine, mannose, galactose, and leucine into protein. N-acetylglucosamine, mannose, and galactose were only incorporated in vitro into proteins from membrane-attached polysomes and not into proteins from free polysomes. Mannose incorporation occurred in the rough endoplasmic reticulum, was stimulated by puromycin but not by cycloheximide, and 90% of the mannose-labeled protein was bound to the membranes. Galactose incorporation, by contrast, occurred in the smooth microsome fraction and 89% of the radioactive protein was in the cisternae. Albumin was mostly recovered (98%) in the cisternae, with negligible amounts in the membranes. To determine whether the radio-active sugars were being incorporated into serum proteins or into membrane protein, the solubilized in vivo-labeled proteins were treated with specific antisera to rat serum proteins or to albumin. Immunoelectrophoresis of the 14C-labeled leucine membrane and cisternal proteins showed that the membranes contained radioactive serum glycoprotein but no albumin, while the cisternal fraction contained all of the radioactive albumin and some glycoproteins. The results indicate that newly formed serum glycoproteins remain attached to the membranes of the rough endoplasmic reticulum after they are released from the membrane-attached polysomes, while albumin passes directly into the cisternae.


1998 ◽  
Vol 4 (S2) ◽  
pp. 1030-1031
Author(s):  
A. Kent Christensen

We have previously described a cryohomogenization method for making in vitropreparations of rough endoplasmic reticulum (RER) and other organelles. The goal of that approach was to minimize the extensive vesicular fragmentation of the endoplasmic reticulum that occurs during homogenization for conventional cell fractionation. The microsome fraction of cell fractionation consists primarily of small vesicles derived from rough and smooth endoplasmic reticulum, and has been of great value in biochemical studies of protein synthesis and secretion. However, the small size of the microsome vesicles has made them less useful for in vitro studies of bound polysomes by electron microscopy. As a further development of our cryohomogenization approach, we here describe a method for removing larger particles and debris from the cryohomogenate by filtration, and the application of in vitro RER and other organelles to EM grid membranes for negative staining and viewing by electron microscopy.


1969 ◽  
Vol 43 (2) ◽  
pp. 289-311 ◽  
Author(s):  
P. Whur ◽  
Annette Herscovics ◽  
C. P. Leblond

Rat thyroid lobes incubated with mannose-3H, galactose-3H, or leucine-3H, were studied by radioautography. With leucine-3H and mannose-3H, the grain reaction observed in the light microscope is distributed diffusely over the cells at 5 min, with no reaction over the colloid. Later, the grains are concentrated towards the apex, and colloid reactions begin to appear by 2 hr. With galactose-3H, the reaction at 5 min is again restricted to the cells but it consists of clumped grains next to the nucleus. Soon after, grains are concentrated at the cell apex and colloid reactions appear in some follicles as early as 30 min. Puromycin almost totally inhibits incorporation of leucine-3H and mannose-3H, but has no detectable effect on galactose-3H incorporation during the 1st hr. Quantitation of electron microscope radioautographs shows that mannose-3H label localizes initially in the rough endoplasmic reticulum, and by 1–2 hr much of this reaction is transferred to the Golgi apparatus. At 3 hr and subsequently, significant reactions are present over apical vesicles and colloid, while the Golgi reaction declines. Label associated with galactose-3H localizes initially in the Golgi apparatus and rapidly transfers to the apical vesicles, and then to the colloid. These findings indicate that mannose incorporation into thyroglobulin precursors occurs within the rough endoplasmic reticulum; these precursors then migrate to the Golgi apparatus, where galactose incorporation takes place. The glycoprotein thus formed migrates via the apical vesicles to the colloid.


FEBS Letters ◽  
1979 ◽  
Vol 98 (2) ◽  
pp. 403-407 ◽  
Author(s):  
John A. Craft ◽  
Michael B. Cooper ◽  
Margaret R. Estall ◽  
Brian R. Rabin

1978 ◽  
Vol 4 (2) ◽  
pp. 111-115 ◽  
Author(s):  
A. M. Feigenbaum ◽  
N. De Groot ◽  
A. A. Hochberg

1976 ◽  
Vol 70 (2) ◽  
pp. 384-394 ◽  
Author(s):  
M Locke ◽  
P Huie

The region between the rough endoplasmic reticulum (ER) and the Golgi complex has been studied in a variety of insect cell types in an attempt to find a marker for the exit gate or gates from the ER. We have found that the smooth surface of the rough endoplasmic reticulum near Golgi complex transitional elements has beadlike structures arranged in rings at the base of transition vesicles. They occur in all insect cell types and a variety of other organisms. The beads can be seen only after staining in bismuth salts. They are 10-12 nm in diameter and are separated from the membrane and one another by a clear halo giving them a center to center spacing of about 27 nm. The beads are not sensitive to nucleases under conditions which disrupt ribosomes or remove all Feulgen staining material from the nucleus. Under conditions similar to those used to stain tissue, bismuth does not react in vitro with nucleic acids. The component of the beads that stains preferentially with bismuth is therefore probably not nucleic acid.


1979 ◽  
Vol 149 (1) ◽  
pp. 17-26 ◽  
Author(s):  
JWM Van Der Meer ◽  
RHJ Beelen ◽  
DM Fluitsma ◽  
R Van Furth

Monoblasts, promonocytes, and macrophages in in vitro cultures of murine bone marrow were studied ultrastructurally, with special attention to peroxidatic activity. Monoblasts show peroxidatic activity in the rough endoplasmic reticulum and nuclear envelope as well as in the granules. The presence of peroxidatic activity in the Golgi apparatus could not be determined. Promonocytes have peroxidase-positive rough endoplasmic reticulum, Golgi apparatus, nuclear envelope, and granules, as previously reported. During culture, cells are formed with peroxidatic activity similar to that of monocytes or exudate macrophages (positive granules; negative Golgi apparatus, RER, and nuclear envelope); we call these cells early macrophages. In addition, transitional macrophages with both positive granules and positive RER, nuclear envelope, negative Golgi apparatus (as in exudate- resident macrophages in vivo), and mature macrophages with peroxidatic activity only in the RER and nuclear envelope (as in resident macrophages in vivo) were found. A considerable number of cells without detectable peroxidatic activity were also encountered. Our finding that macrophages with the peroxidatic pattern of monocytes (early macrophages), exudate-resident macrophages (transitional macrophages), and resident macrophages (mature macrophages), develop in vitro from proliferating precursor cells deriving from the bone marrow, demonstrates once again that resident macrophages in tissues originate from precursor cells in the bone marrow. Therefore, this conclusion can no longer be challenged on the basis of a cytochemical difference between monocytes and exudate macrophages on the one hand and resident macrophages on the other.


2000 ◽  
Vol 148 (6) ◽  
pp. 1203-1212 ◽  
Author(s):  
Anton Schmitz ◽  
Helga Herrgen ◽  
Alexandra Winkeler ◽  
Volker Herzog

After endocytosis cholera toxin is transported to the endoplasmic reticulum (ER), from where its A1 subunit (CTA1) is assumed to be transferred to the cytosol by an as-yet unknown mechanism. Here, export of CTA1 from the ER to the cytosol was investigated in a cell-free assay using either microsomes loaded with CTA1 by in vitro translation or reconstituted microsomes containing CTA1 purified from V. cholerae. Export of CTA1 from the microsomes was time- and adenosine triphosphate–dependent and required lumenal ER proteins. By coimmunoprecipitation CTA1 was shown to be associated during export with the Sec61p complex, which mediates import of proteins into the ER. Export of CTA1 was inhibited when the Sec61p complexes were blocked by nascent polypeptides arrested during import, demonstrating that the export of CTA1 depended on translocation-competent Sec61p complexes. Export of CTA1 from the reconstituted microsomes indicated the de novo insertion of the toxin into the Sec61p complex from the lumenal side. Our results suggest that Sec61p complex–mediated protein export from the ER is not restricted to ER-associated protein degradation but is also used by bacterial toxins, enabling their entry into the cytosol of the target cell.


Sign in / Sign up

Export Citation Format

Share Document