scholarly journals EFFECTS OF COLCHICINE, CYTOCHALASIN B, AND 2-DEOXYGLUCOSE ON THE TOPOGRAPHICAL ORGANIZATION OF SURFACE-BOUND CONCANAVALIN A IN NORMAL AND TRANSFORMED FIBROBLASTS

1974 ◽  
Vol 61 (1) ◽  
pp. 70-82 ◽  
Author(s):  
Thomas E. Ukena ◽  
Joan Z. Borysenko ◽  
Morris J. Karnovsky ◽  
Richard D. Berlin

The distribution of surface-bound concanavalin A on the membranes of 3T3, and simian virus 40-transformed 3T3 cultured mouse fibroblasts was examined using a shadow-cast replica technique with a hemocyanin marker. When cells were prefixed in paraformaldehyde, the binding site distribution was always random on both cell types. On the other hand, labeling of transformed cells with concanavalin A (Con A) and hemocyanin at 37°C resulted in the organization of Con A binding sites (CABS) into clusters (primary organization) which were not present on the pseudopodia and other peripheral areas of the membrane (secondary organization). Treatment of transformed cells with colchicine, cytochalasin B, or 2-deoxyglucose did not alter the inherent random distribution of binding sites as determined by fixation before labeling. However, these drugs produced marked changes in the secondary (but not the primary) organization of CABS on transformed cells labeled at 37°C. Colchicine treatment resulted in the formation of a caplike aggregation of binding site clusters near the center of the cell, whereas cytochalasin B and 2-deoxyglucose led to the formation of patches of CABS over the entire membrane, eliminating the inward displacement of patches observed on untreated cells. The distribution of bound Con A on normal cells (3T3) at 37°C was always random, in both control and drug-treated preparations. Pretreatment of cells with Con A enhanced the effect of colchicine on cell morphology, but inhibited the morphological effects of cytochalasin B. The mechanisms that determine receptor movement and disposition are discussed.

1975 ◽  
Vol 66 (2) ◽  
pp. 392-403 ◽  
Author(s):  
B Storrie

Exposure of CHO-K1 cells in vitro to dibutyryl adenosine cyclic 3',5'-monophosphate (DBcAMP) plus testololactone produces a rapid, reversible antagonism of ligand-induced collection of initially dispersed concanavalin A (Con A) binding sites into a caplike mass. Morphologically, as Con A capping occurs, the cells become less spread and then round completely. With prolonged Con A exposure, cells cultured in either the absence or the presence of DBcAMP plus testololactone cap and round. Capping is blocked by cold treatment and respiratory inhibitors. Colcemid at concentrations greater than 1 muM promotes both Con A capping and cell rounding. Cytochalasin B at similar concentrations inhibits both capping and cell rounding. Treatment of cells with Con A has little effect on intracellular cAMP concentration. Possible mechanisms by which cAMP may modulate the movement of Con A binding sites are discussed.


1988 ◽  
Vol 8 (8) ◽  
pp. 3215-3226 ◽  
Author(s):  
K M Barnhart ◽  
C G Kim ◽  
S S Banerji ◽  
M Sheffery

The proteins responsible for erythroid-specific footprints extending to -180 on the mouse alpha-globin gene were identified, enriched, and characterized from extracts of murine erythroleukemia (MEL) cells. Three proteins accounted for most aspects of the footprints. The binding sites of two proteins, termed alpha-CP1 and alpha-CP2, overlapped in the CCAAT box. Further characterization of these two CCAAT binding proteins showed that neither interacted with the adenovirus origin of replication, a strong CCAAT transcription factor-nuclear factor 1 binding site. A third protein, termed alpha-IRP, interacted with two sequences that formed an inverted repeat (IR) between the CCAAT and TATAA boxes. Interestingly, the binding domain of one of the CCAAT factors, alpha-CP1, overlapped one alpha-IRP binding site. alpha-CP1 thus overlapped the binding domains of both alpha-CP2 and alpha-IRP. The IRs included GC-rich sequences reminiscent of SP1-binding sites. Indeed, alpha-IRP bound as well to the alpha-promoter as it did to SP1 sites in the simian virus 40 early promoter. These results suggest that alpha-IRP may be related to the transcription factor Sp1. We determined the level of each alpha-globin-binding activity before and after induced erythroid differentiation of MEL cells. We found that differentiation caused alpha-CP1 activity to drop three- to fivefold, while alpha-IRP activity decreased slightly and alpha-CP2 activity increased two- to threefold.


1988 ◽  
Vol 8 (8) ◽  
pp. 3215-3226
Author(s):  
K M Barnhart ◽  
C G Kim ◽  
S S Banerji ◽  
M Sheffery

The proteins responsible for erythroid-specific footprints extending to -180 on the mouse alpha-globin gene were identified, enriched, and characterized from extracts of murine erythroleukemia (MEL) cells. Three proteins accounted for most aspects of the footprints. The binding sites of two proteins, termed alpha-CP1 and alpha-CP2, overlapped in the CCAAT box. Further characterization of these two CCAAT binding proteins showed that neither interacted with the adenovirus origin of replication, a strong CCAAT transcription factor-nuclear factor 1 binding site. A third protein, termed alpha-IRP, interacted with two sequences that formed an inverted repeat (IR) between the CCAAT and TATAA boxes. Interestingly, the binding domain of one of the CCAAT factors, alpha-CP1, overlapped one alpha-IRP binding site. alpha-CP1 thus overlapped the binding domains of both alpha-CP2 and alpha-IRP. The IRs included GC-rich sequences reminiscent of SP1-binding sites. Indeed, alpha-IRP bound as well to the alpha-promoter as it did to SP1 sites in the simian virus 40 early promoter. These results suggest that alpha-IRP may be related to the transcription factor Sp1. We determined the level of each alpha-globin-binding activity before and after induced erythroid differentiation of MEL cells. We found that differentiation caused alpha-CP1 activity to drop three- to fivefold, while alpha-IRP activity decreased slightly and alpha-CP2 activity increased two- to threefold.


1976 ◽  
Vol 68 (3) ◽  
pp. 781-787 ◽  
Author(s):  
S Hoffstein ◽  
R Soberman ◽  
I Goldstein ◽  
G Weissmann

Human neutrophils stimulated by concanavalin A (Con A, 100 microng/ml) contained markedly enhanced numbers of microtubules and discharged peroxidase-negative (specific) but not peroxidase-position (azurophile) granules. Release of lysozyme from specific granules was dose and time dependent, could be inhibitied by alpha-methyl-D-mannoside, and enhanced by cytochalasin B. Many microtubules were associated with internalized plasma membrane bearing Con A binding sites.


1993 ◽  
Vol 13 (2) ◽  
pp. 961-969
Author(s):  
M C Gruda ◽  
J M Zabolotny ◽  
J H Xiao ◽  
I Davidson ◽  
J C Alwine

Simian virus 40 (SV40) large T antigen is a potent transcriptional activator of both viral and cellular promoters. Within the SV40 late promoter, a specific upstream element necessary for T-antigen transcriptional activation is the binding site for transcription-enhancing factor 1 (TEF-1). The promoter structure necessary for T-antigen-mediated transcriptional activation appears to be simple. For example, a promoter consisting of upstream TEF-1 binding sites (or other factor-binding sites) and a downstream TATA or initiator element is efficiently activated. It has been demonstrated that transcriptional activation by T antigen does not require direct binding to the DNA; thus, the most direct effect that T antigen could have on these simple promoters would be through protein-protein interactions with either upstream-bound transcription factors, the basal transcription complex, or both. To determine whether such interactions occur, full-length T antigen or segments of it was fused to the glutathione-binding site (GST fusions) or to the Gal4 DNA-binding domain (amino acids 1 to 147) (Gal4 fusions). With the GST fusions, it was found that TEF-1 and the TATA-binding protein (TBP) bound different regions of T antigen. A GST fusion containing amino acids 5 to 172 (region T1) efficiently bound TBP. TEF-1 bound neither region T1 nor a region between amino acids 168 and 373 (region T2); however, it bound efficiently to the combined region (T5) containing amino acids 5 to 383.(ABSTRACT TRUNCATED AT 250 WORDS)


1975 ◽  
Vol 18 (3) ◽  
pp. 427-440
Author(s):  
J.E. Thompson ◽  
J.D. Elligsen ◽  
H.E. Frey

A transformed variant derived as a clone from normal 3T3 cells infected with simian virus 40 (SV40) has been found to possess a phenotype intermediate between that of normal cells and that characteristic of the transformed state, yet cells of the variant still test positively for the SV40-specific nuclear T-antigen. The variant exercises growth control, although not as stringently as do normal cells. Its cell size more closely resembles that of normal cells than of transformed cells. The variant also exhibits levels of spontaneous agglutination that are in line with those characteristic of the normal cells from which it was derived, and far higher than corresponding values for cells exhibiting the fully transformed phenotype. Plasma membranes of variant cells more closely resemble those of transformed cells than of normal cells as estimated by polyacrylamide gel electrophoresis. Perhaps the most distinguishing characteristic of the transformed variant is its complete immunity to agglutination by concanavalin A (Con A), even at concentrations of the lectin as high as 500 mug/ml. Moreover, trypsinization does not render variant cells as agglutinable in the presence of Con A as are untreated fully transformed cells. By contrast the variant displays a low tolerance of Con A toxicity, as monitored by ability to grow after treatment with the lectin, and on this count resembles transformed cells. Moreover a survey of several normal cell lines has revealed that even they do not consistently show resistance to Con A toxicity. These observations indicate that Con A-mediated agglutination and inability to grow after treatment with Con A are quite independent and do not bear a cause and effect relationship.


1980 ◽  
Vol 28 (6) ◽  
pp. 543-551 ◽  
Author(s):  
M Yokoyama ◽  
J P Chang ◽  
P C Moller

Concanavalin A (Con A) binding sites and their mobility were studied by peroxidase (Po) and ferritin labeling techniques in normal and SV40 transformed human fibroblasts. Binding sites were visualized either as osmium black of 3'3-diaminobenzidine (DAB) reactions or as ferritin particles. DAB reaction products were localized at the external surface of the plasma membrane and in some multivesicular bodies of fixed cells. The labeling was continuous in normal and SV40 transformed human fibroblasts. When living cells were treated with Con A-Po at 4 degrees C and incubated at 37 degrees C, both normal and transformed cells showed remarkable changes. The foci of membrane indentations (caps or patches) are formed on the cell surface. Many labeled internalized vacuoles and vesicles appeared within the cytoplasm and in close proximity to the Golgi region of all cell types. The cellular changes occurred more quickly in transformed cells than in normal cells. It is concluded that normal cells do cap under certain conditions and that the plasma membranes of transformed cells are more fluid than those of normal cells.


1993 ◽  
Vol 13 (2) ◽  
pp. 961-969 ◽  
Author(s):  
M C Gruda ◽  
J M Zabolotny ◽  
J H Xiao ◽  
I Davidson ◽  
J C Alwine

Simian virus 40 (SV40) large T antigen is a potent transcriptional activator of both viral and cellular promoters. Within the SV40 late promoter, a specific upstream element necessary for T-antigen transcriptional activation is the binding site for transcription-enhancing factor 1 (TEF-1). The promoter structure necessary for T-antigen-mediated transcriptional activation appears to be simple. For example, a promoter consisting of upstream TEF-1 binding sites (or other factor-binding sites) and a downstream TATA or initiator element is efficiently activated. It has been demonstrated that transcriptional activation by T antigen does not require direct binding to the DNA; thus, the most direct effect that T antigen could have on these simple promoters would be through protein-protein interactions with either upstream-bound transcription factors, the basal transcription complex, or both. To determine whether such interactions occur, full-length T antigen or segments of it was fused to the glutathione-binding site (GST fusions) or to the Gal4 DNA-binding domain (amino acids 1 to 147) (Gal4 fusions). With the GST fusions, it was found that TEF-1 and the TATA-binding protein (TBP) bound different regions of T antigen. A GST fusion containing amino acids 5 to 172 (region T1) efficiently bound TBP. TEF-1 bound neither region T1 nor a region between amino acids 168 and 373 (region T2); however, it bound efficiently to the combined region (T5) containing amino acids 5 to 383.(ABSTRACT TRUNCATED AT 250 WORDS)


1980 ◽  
Vol 34 (3) ◽  
pp. 650-657 ◽  
Author(s):  
Daniel T. Simmons ◽  
Malcolm A. Martin ◽  
Peter T. Mora ◽  
Chungming Chang

Sign in / Sign up

Export Citation Format

Share Document