scholarly journals Electron microscope localization of acetylcholinesterase and butyrylcholinesterase in the superior cervical ganglion of the cat. I. Normal ganglion.

1978 ◽  
Vol 78 (3) ◽  
pp. 785-809 ◽  
Author(s):  
R Davis ◽  
G B Koelle

The distributions of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) in the superior cervical ganglion (SCG) of the cat were determined by electron microscopy (EM) with the bis-(thioacetoxy)aurate (I), or Au(TA)2, method. Before the infusion of fixative, one of the enzymes was selectively, irreversibly inactivated in vivo, as confirmed by light microscope (LM) examination of sections of the stellate ganglion stained by the more specific copper thiocholine method. Physostigmine-treated controls, for inhibition of AChE or BuChE, were stained concomitantly with tissue for enzyme localization by the Au(TA)2 method for EM examination in each experiment. It was concluded that most of the AChE of the cat SCG is present in the plasma membranes of the preganglionic axons and their terminals, and in the dendritic and perikaryonal plasma membranes of the postsynaptic ganglion cells. BuChE is confined largely to the postsynaptic neuronal plasma membranes. Reasons for the discrepancies between the localizations found by the present direct EM observations and those deduced earlier from LM comparisons of normal and denervated SCG are discussed. It is proposed that a trophic factor released by the preganglionic terminals is probably required for the synthesis of postsynaptic neuronal AChE, and that BuChE may serve as a precursor of AChE at that site.


1984 ◽  
Vol 32 (8) ◽  
pp. 849-861 ◽  
Author(s):  
R Davis ◽  
G B Koelle ◽  
U J Sanville

Ciliary ganglia (CG) of cats were stained for acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) by the bis-(thioacetoxy) aurate (I), or Au(TA)2, method for examination by electron microscopy. Acetylcholinesterase was localized along the axolemmas of the preganglionic fibers and their terminals and on the plasmalemmas of the perikarya and dendrites of the ganglion cells, as in the cat superior cervical ganglion (SCG). In contrast to the SCG, AChE was also found in significant amounts in the rough endoplasmic reticulum of the CG cells and dendrites, and in varying but high concentrations in channels of extracellular space in the complex capsular region surrounding the perikarya and dendrites. Butyrylcholinesterase was confined chiefly to the dendritic and perikaryonal plasma membranes of the ganglion cells, as in the SCG. Lysosomes and mitochondria were stained chiefly for non-cholinesterase enzymes, as indicated by the physostigmine-treated controls. The significance of these distributions is discussed.



1990 ◽  
Vol 38 (10) ◽  
pp. 1445-1449 ◽  
Author(s):  
J R Quatacker ◽  
W G Annaert ◽  
W P De Potter

Highly glycosylated compounds have been demonstrated in the axonal reticulum elements of the superior cervical ganglion cells of the rat, and this is considered to suggest a connection of the reticulum with the trans Golgi side. In the present study, the axonal reticulum and the Golgi elements were further characterized by post-embedding methods of lectin-gold cytochemistry to determine their carbohydrate residues and to see, more specifically, if sialic acid residues could be detected in the axonal reticulum elements. Therefore, the affinity of neuronal cell structures for Limax flavus agglutinin (LFA), wheat germ agglutinin (WGA), and Ricinus communis agglutinin I (RCA-I) was tested in ultra-thin sections of glycolmethacrylate-embedded material, counterstained with phosphotungstic acid (PTA) at low pH. The trans Golgi network, the Golgi-associated axonal reticulum, the reticulum within axons, the large dense-cored vesicles, and the plasma membranes were reactive for all three lectins used. We conclude that the axonal reticulum elements carry sialic acid residues, relating them to the trans Golgi network. The present results support the concept that the axonal reticulum is an extension of the trans network of the Golgi apparatus specialized for neurosecretion.



1991 ◽  
Vol 544 (2) ◽  
pp. 203-210 ◽  
Author(s):  
Francisco Alonso-deFlorida ◽  
Miguel A. Morales ◽  
A.A. Minzoni


2009 ◽  
Vol 64A (1) ◽  
pp. 34-44 ◽  
Author(s):  
E. J. Behringer ◽  
C. K. Vanterpool ◽  
W. J. Pearce ◽  
S. M. Wilson ◽  
J. N. Buchholz




1980 ◽  
Vol 88 (3) ◽  
pp. 252-256 ◽  
Author(s):  
Douglas E. Mattox

The single most important factor determining the patency of a microvascular anastomosis is the surgical precision with which it is performed. Inaccurately placed sutures, damage of the intima, exposed media and adventitia, and stenosis of the lumen at the site anastomosis all contribute to decreased patency rates. The first 50 consecutive microvascular anastomoses performed by a single microvascular surgeon were analyzed in vivo and with the scanning electron microscope. The frequency and significance of various technical errors are discussed. Scanning electron microscopy is recommended as a convenient and quick technique for assessing the evenness and accuracy of intimal apposition in microvascular anastomosis.



Sign in / Sign up

Export Citation Format

Share Document