cell somata
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 4)

H-INDEX

20
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Sarwat Amina ◽  
Carmen Falcone ◽  
Tiffany Hong ◽  
Marisol Wendy Wolf-Ochoa ◽  
Gelareh Vakilzadeh ◽  
...  

Abstract An alteration in the balance of excitation-inhibition has been proposed as a common characteristic of the cerebral cortex in autism, which may be due to an alteration in the number and/or function of the excitatory and/or inhibitory cells that form the cortical circuitry. We previously found a decreased number of the parvalbumin (PV)+ interneuron known as Chandelier (Ch) cell in the prefrontal cortex in autism. This decrease could result from a decreased number of Ch cells, but also from decreased PV protein expression by Ch cells. To further determine if Ch cell number is altered in autism, we quantified the number of Ch cells following a different approach and different patient cohort than in our previous studies. We quantified the number of Ch cell cartridges—rather than Ch cell somata—that expressed GAT1—rather than PV. Specifically, we quantified GAT1+ cartridges in prefrontal areas BA9, BA46, and BA47 of 11 cases with autism and 11 control cases. We found that the density of GAT1+ cartridges was decreased in autism in all areas and layers. Whether this alteration is cause or effect remains unclear but could result from alterations that take place during cortical prenatal and/or postnatal development.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Joy Zhou ◽  
Amanda M Brown ◽  
Elizabeth P Lackey ◽  
Marife Arancillo ◽  
Tao Lin ◽  
...  

Ramón y Cajal proclaimed the neuron doctrine based on circuit features he exemplified using cerebellar basket cell projections. Basket cells form dense inhibitory plexuses that wrap Purkinje cell somata and terminate as pinceaux at the initial segment of axons. Here, we demonstrate that HCN1, Kv1.1, PSD95 and GAD67 unexpectedly mark patterns of basket cell pinceaux that map onto Purkinje cell functional zones. Using cell-specific genetic tracing with an Ascl1CreERT2 mouse conditional allele, we reveal that basket cell zones comprise different sizes of pinceaux. We tested whether Purkinje cells instruct the assembly of inhibitory projections into zones, as they do for excitatory afferents. Genetically silencing Purkinje cell neurotransmission blocks the formation of sharp Purkinje cell zones and disrupts excitatory axon patterning. The distribution of pinceaux into size-specific zones is eliminated without Purkinje cell GABAergic output. Our data uncover the cellular and molecular diversity of a foundational synapse that revolutionized neuroscience.


Author(s):  
Joy Zhou ◽  
Amanda M. Brown ◽  
Elizabeth P. Lackey ◽  
Marife Arancillo ◽  
Tao Lin ◽  
...  

AbstractRamón y Cajal proclaimed the neuron doctrine based on circuit features he exemplified using cerebellar basket cell projections. Basket cells form dense inhibitory plexuses that wrap Purkinje cell somata and terminate as pinceaux at the initial segment of axons. Here, we demonstrate that HCN1, Kv1.1, PSD95 and GAD67 unexpectedly mark patterns of basket cell pinceaux that map onto Purkinje cell functional zones. Using cell-specific genetic tracing with an Ascl1CreERT2 mouse conditional allele, we reveal that basket cell zones comprise different sizes of pinceaux. We tested whether Purkinje cells instruct the assembly of inhibitory projections into zones, as they do for excitatory afferents. Genetically silencing Purkinje cell neurotransmission blocks the formation of sharp Purkinje cell zones and disrupts excitatory axon patterning. The distribution of pinceaux into size-specific zones is eliminated without Purkinje cell output. Our data uncover the cellular and molecular diversity of a foundational synapse that revolutionized neuroscience.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Larisa Kavetsky ◽  
Kayla K. Green ◽  
Bridget R. Boyle ◽  
Fawad A. K. Yousufzai ◽  
Zachary M. Padron ◽  
...  

Abstract Niemann Pick Type-C disease (NPC) is an inherited lysosomal storage disease (LSD) caused by pathogenic variants in the Npc1 or Npc2 genes that lead to the accumulation of cholesterol and lipids in lysosomes. NPC1 deficiency causes neurodegeneration, dementia and early death. Cerebellar Purkinje cells (PCs) are particularly hypersensitive to NPC1 deficiency and degenerate earlier than other neurons in the brain. Activation of microglia is an important contributor to PCs degeneration in NPC. However, the mechanisms by which activated microglia promote PCs degeneration in NPC are not completely understood. Here, we are demonstrating that in the Npc1nmf164 mouse cerebellum, microglia in the molecular layer (ML) are activated and contacting dendrites at early stages of NPC, when no loss of PCs is detected. During the progression of PCs degeneration in Npc1nmf164 mice, accumulation of phagosomes and autofluorescent material in microglia at the ML coincided with the degeneration of dendrites and PCs. Feeding Npc1nmf164 mice a western diet (WD) increased microglia activation and corresponded with a more extensive degeneration of dendrites but not PC somata. Together our data suggest that microglia contribute to the degeneration of PCs by interacting, engulfing and phagocytosing their dendrites while the cell somata are still present.


2018 ◽  
Vol 12 ◽  
Author(s):  
Alja Lüdke ◽  
Georg Raiser ◽  
Johannes Nehrkorn ◽  
Andreas V. M. Herz ◽  
C. Giovanni Galizia ◽  
...  

Author(s):  
Alja Lüdke ◽  
Georg Raiser ◽  
Johannes Nehrkorn ◽  
Andreas V. M. Herz ◽  
C. Giovanni Galizia ◽  
...  

Open Biology ◽  
2017 ◽  
Vol 7 (1) ◽  
pp. 160288 ◽  
Author(s):  
Lilian Kisiswa ◽  
Clara Erice ◽  
Laurent Ferron ◽  
Sean Wyatt ◽  
Catarina Osório ◽  
...  

Tumour necrosis factor receptor 1 (TNFR1)-activated TNFα reverse signalling, in which membrane-integrated TNFα functions as a receptor for TNFR1, enhances axon growth from developing sympathetic neurons and plays a crucial role in establishing sympathetic innervation. Here, we have investigated the link between TNFα reverse signalling and axon growth in cultured sympathetic neurons. TNFR1-activated TNFα reverse signalling promotes Ca 2+ influx, and highly selective T-type Ca 2+ channel inhibitors, but not pharmacological inhibitors of L-type, N-type and P/Q-type Ca 2+ channels, prevented enhanced axon growth. T-type Ca 2+ channel-specific inhibitors eliminated Ca 2+ spikes promoted by TNFα reverse signalling in axons and prevented enhanced axon growth when applied locally to axons, but not when applied to cell somata. Blocking action potential generation did not affect the effect of TNFα reverse signalling on axon growth, suggesting that propagated action potentials are not required for enhanced axon growth. TNFα reverse signalling enhanced protein kinase C (PKC) activation, and pharmacological inhibition of PKC prevented the axon growth response. These results suggest that TNFα reverse signalling promotes opening of T-type Ca 2+ channels along sympathetic axons, which is required for enhanced axon growth.


2015 ◽  
Vol 211 (4) ◽  
pp. 897-911 ◽  
Author(s):  
Marisa S. Feiler ◽  
Benjamin Strobel ◽  
Axel Freischmidt ◽  
Anika M. Helferich ◽  
Julia Kappel ◽  
...  

Transactive response DNA-binding protein 43 kD (TDP-43) is an aggregation-prone prion-like domain-containing protein and component of pathological intracellular aggregates found in most amyotrophic lateral sclerosis (ALS) patients. TDP-43 oligomers have been postulated to be released and subsequently nucleate TDP-43 oligomerization in recipient cells, which might be the molecular correlate of the systematic symptom spreading observed during ALS progression. We developed a novel protein complementation assay allowing quantification of TDP-43 oligomers in living cells. We demonstrate the exchange of TDP-43 between cell somata and the presence of TDP-43 oligomers in microvesicles/exosomes and show that microvesicular TDP-43 is preferentially taken up by recipient cells where it exerts higher toxicity than free TDP-43. Moreover, studies using microfluidic neuronal cultures suggest both anterograde and retrograde trans-synaptic spreading of TDP-43. Finally, we demonstrate TDP-43 oligomer seeding by TDP-43–containing material derived from both cultured cells and ALS patient brain lysate. Thus, using an innovative detection technique, we provide evidence for preferentially microvesicular uptake as well as both soma-to-soma “horizontal” and bidirectional “vertical” synaptic intercellular transmission and prion-like seeding of TDP-43.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Yoshiyuki Kubota ◽  
Satoru Kondo ◽  
Masaki Nomura ◽  
Sayuri Hatada ◽  
Noboru Yamaguchi ◽  
...  

Inhibitory interneurons target precise membrane regions on pyramidal cells, but differences in their functional effects on somata, dendrites and spines remain unclear. We analyzed inhibitory synaptic events induced by cortical, fast-spiking (FS) basket cells which innervate dendritic shafts and spines as well as pyramidal cell somata. Serial electron micrograph (EMg) reconstructions showed that somatic synapses were larger than dendritic contacts. Simulations with precise anatomical and physiological data reveal functional differences between different innervation styles. FS cell soma-targeting synapses initiate a strong, global inhibition, those on shafts inhibit more restricted dendritic zones, while synapses on spines may mediate a strictly local veto. Thus, FS cell synapses of different sizes and sites provide functionally diverse forms of pyramidal cell inhibition.


Sign in / Sign up

Export Citation Format

Share Document