scholarly journals Possible involvement of messenger RNA-associated proteins in protein synthesis.

1982 ◽  
Vol 93 (3) ◽  
pp. 893-898 ◽  
Author(s):  
H P Schmid ◽  
K Köhler ◽  
B Setyono

Two distinct forms of globin messenger RNA were isolated from mouse spleen cells infected with Friend erythroleukemia virus: polyribosomal messenger ribonucleoprotein particles (15S mRNP), and their corresponding protein-free mRNAs obtained by chemical deproteinization. The translation efficiencies of both messenger forms were assayed in a Krebs II ascites cell-free system. Selective removal of RNA-binding proteins from the ascites cell lysate did not affect globin synthesis when the mRNA was supplied as 15S mRNP; deproteinized mRNA however was not translated. Only in the presence of two fractions of RNA-binding proteins was the protein-free mRNA translated. Some of the RNA-binding proteins have the same molecular weights and isoelectric points as the principal proteins of 15S mRNP.

2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Michael C. Yu

In eukaryotes, messenger RNA biogenesis depends on the ordered and precise assembly of a nuclear messenger ribonucleoprotein particle (mRNP) during transcription. This process requires a well-orchestrated and dynamic sequence of molecular recognition events by specific RNA-binding proteins. Arginine methylation is a posttranslational modification found in a plethora of RNA-binding proteins responsible for mRNP biogenesis. These RNA-binding proteins include both heterogeneous nuclear ribonucleoproteins (hnRNPs) and serine/arginine-rich (SR) proteins. In this paper, I discuss the mechanisms of action by which arginine methylation modulates various facets of mRNP biogenesis, and how the collective consequences of this modification impart the specificity required to generate a mature, translational- and export-competent mRNP.


2002 ◽  
Vol 3 (3) ◽  
pp. 195-205 ◽  
Author(s):  
Gideon Dreyfuss ◽  
V. Narry Kim ◽  
Naoyuki Kataoka

2019 ◽  
Author(s):  
Andrés López-Cortés ◽  
Alejandro Cabrera-Andrade ◽  
José M. Vázquez-Naya ◽  
Alejandro Pazos ◽  
Humberto Gonzáles-Díaz ◽  
...  

ABSTRACTBackgroundBreast cancer (BC) is a heterogeneous disease characterized by an intricate interplay between different biological aspects such as ethnicity, genomic alterations, gene expression deregulation, hormone disruption, signaling pathway alterations and environmental determinants. Due to the complexity of BC, the prediction of proteins involved in this disease is a trending topic in drug design.MethodsThis work is proposing accurate prediction classifier for BC proteins using six sets of protein sequence descriptors and 13 machine learning methods. After using a univariate feature selection for the mix of five descriptor families, the best classifier was obtained using multilayer perceptron method (artificial neural network) and 300 features.ResultsThe performance of the model is demonstrated by the area under the receiver operating characteristics (AUROC) of 0.980 ± 0.0037 and accuracy of 0.936 ± 0.0056 (3-fold cross-validation). Regarding the prediction of 4504 cancer-associated proteins using this model, the best ranked cancer immunotherapy proteins related to BC were RPS27, SUPT4H1, CLPSL2, POLR2K, RPL38, AKT3, CDK3, RPS20, RASL11A and UBTD1; the best ranked metastasis driver proteins related to BC were S100A9, DDA1, TXN, PRNP, RPS27, S100A14, S100A7, MAPK1, AGR3 and NDUFA13; and the best ranked RNA-binding proteins related to BC were S100A9, TXN, RPS27L, RPS27, RPS27A, RPL38, MRPL54, PPAN, RPS20 and CSRP1.ConclusionsThis powerful model predicts several BC-related proteins which should be deeply studied to find new biomarkers and better therapeutic targets. The script and the results are available as a free repository at https://github.com/muntisa/neural-networks-for-breast-cancer-proteins.


2020 ◽  
Author(s):  
Mahmoud-Reza Rafiee ◽  
Julian A Zagalak ◽  
Giulia Tyzack ◽  
Rickie Patani ◽  
Jernej Ule ◽  
...  

AbstractChromatin is composed of many proteins that mediate intermolecular transactions with the genome. Comprehensive knowledge of these components and their interactions is necessary for insights into gene regulation and other activities; however, reliable identification of chromatin-associated proteins remains technically challenging. Here, we present SPACE (Silica Particle Assisted Chromatin Enrichment), a stringent and straightforward chromatin-purification method that helps identify direct DNA-binders separately from chromatin-associated proteins. We demonstrate SPACE’s unique strengths in three experimental set-ups: the sensitivity to detect novel chromatin-associated proteins, the quantitative nature to measure dynamic protein use across distinct cellular conditions, and the ability to handle 10-25 times less starting material than competing methods. In doing so, we reveal an unforeseen scale of association between over 500 nuclear RNA-binding proteins (RBPs) with chromatin and DNA, providing new insights into their roles as important regulators of genome maintenance and chromatin composition. Applied to iPSC-derived neural precursors, we discover a new role for the amyotrophic lateral sclerosis (ALS)-causing Valosin Containing Protein (VCP) in recruiting DNA-damage components to chromatin, thus paving the way for molecular mechanistic insights into the disease. SPACE is a fast and versatile technique with many applications.


2020 ◽  
Author(s):  
L. Nascimento ◽  
M. Terrao ◽  
KK. Marucha ◽  
B. Liu ◽  
F. Egler ◽  
...  

AbstractControl of gene expression in kinetoplastids depends heavily on RNA-binding proteins that influence mRNA decay and translation. We previously showed that MKT1 interacts with PBP1, which in turn recruits LSM12 and poly(A) binding protein. MKT1 is recruited to mRNA by sequence-specific RNA-binding proteins, resulting in stabilisation of mRNA. We here show that PBP1, LSM12 and an additional 117-residue protein, XAC1 (Tb927.7.2780), are present in complexes that contain either MKT1 or MKT1L (Tb927.10.1490). All five proteins are present predominantly in the complexes, and there was evidence for a minor subset of complexes that contained both MKT1 and MKT1L. MKT1 appeared to be associated with many mRNAs, with the exception of those encoding ribosomal proteins. XAC1-containing complexes reproducibly contained RNA-binding proteins that were previously found associated with MKT1. In addition, however, XAC1- or MKT1-containing complexes specifically recruit one of the six translation initiation complexes, EIF4E6-EIF4G5; and yeast 2-hybrid assay results indicated that MKT1 interacts with EIF4G5. The C-terminus of MKT1L resembles MKT1: it contains MKT1 domains and a PIN domain that is probably not active as an endonuclease. MKT1L, however, also has an N-terminal extension with regions of low-complexity. Although MKT1L depletion inhibited cell proliferation, we found no evidence for specific interactions with RNA-binding proteins or mRNA. Deletion of the N-terminal extension, however, enabled MKT1L to interact with EIF4E6. We speculate that MKT1L may either enhance or inhibit the functions of MKT1-containing complexes.


2021 ◽  
Author(s):  
Xinyu Gu ◽  
Nicholas P Schafer ◽  
Peter G Wolynes

Translation of messenger RNA is regulated through a diverse set of RNA-binding proteins. A significant fraction of RNA-binding proteins contain prion-like domains which form functional prions. This raises the question of how prions can play a role in translational control. Local control of translation in dendritic spines by prions has been invoked in the mechanism of synaptic plasticity and memory. We show how channeling through diffusion and processive translation cooperate in highly ordered mRNA/prion aggregates as well as in less ordered mRNA/protein condensates depending on their substructure. We show the direction of translational control, whether it is repressive or activating, depends on the polarity of the mRNA distribution in mRNA/prion assemblies which determines whether vectorial channeling can enhance recycling of ribosomes. Our model also addresses the effect of changes of substrate concentration in assemblies that have been suggested previously to explain translation control by assemblies through the introduction of a potential of mean force biasing diffusion of ribosomes inside the assemblies. The results from the model are compared with the experimental data on translational control by two functional RNA-binding prions, CPEB involved in memory and Rim4 involved in gametogenesis.


Sign in / Sign up

Export Citation Format

Share Document