scholarly journals TRANSFER OF RESPONSIVENESS TO HAPTEN CONJUGATES OF POLY-L-LYSINE AND OF A COPOLYMER OF L-GLUTAMIC ACID AND L-LYSINE TO LETHALLY IRRADIATED NON-RESPONDER GUINEA PIGS BY BONE MARROW OR LYMPH NODE AND SPLEEN CELLS FROM RESPONDER GUINEA PIGS

1969 ◽  
Vol 130 (5) ◽  
pp. 1107-1122 ◽  
Author(s):  
John Foerster ◽  
Ira Green ◽  
Jean-Pierre Lamelin ◽  
Baruj Benacerraf

Hartley guinea pigs genetically unresponsive to hapten-PLL (poly-L-lysine) conjugates were lethally irradiated and given allogeneic bone marrow from Hartley responder animals. Many of the animals died of graft versus host disease before their response to 2,4-dinitrophenyl-PLL (DNP-PLL) could be measured. The immune response of the surviving recipient animals was evaluated by anti-DNP antibody production, development of delayed hypersensitivity to DNP-poly-L-lysine, as well as by lymph node cell stimulation in vitro by this antigen. 12 of 14 recipient animals thus treated made an immune response as measured by 2 of the 3 parameters. Strain 13 guinea pigs, genetically unable to respond immunologically to DNP-PLL and to DNP-GL (2,4-dinitrophenyl-L-glutamic acid L-lysine copolymer) were lethally irradiated and given bone marrow from (2 x 13) F1 responder animals or strain 13 bone marrow and (2 x 13) F1 lymph node and spleen cells. A high proportion of the animals survived this procedure; no evidence of graft versus host disease was observed. Three of three strain 13 animals irradiated and, given strain 13 bone marrow and (2 x 13) F1 lymph node and spleen, and then immunized with DNP-PL, made a specific immune response. 7 of 10 irradiated strain 13 animals given strain 13 bone marrow and (2 x 13) F1 lymph node and spleen made an immune response to DNP-GL. However, only one of six irradiated strain 13 animals made a vigorous immune response to DNP-GL after reconstitution with (2 x 13) F1 bone marrow alone. The ability to transfer the immune response to PLL antigens from responder to nonresponder animals demonstrates unequivocally that the defect in the non-responder animals is immunological rather than due to some other type of non-immunological mechanism. The bone marrow contains all the immunological cells necessary for the expression of the PLL gene. However, the finding that (2 x 13) F1 lymph node and spleen cells were more effective than (2 x 13)F1 bone marrow cell populations (known to be a rich source of monocyte precursors) suggests that the cells in which the PLL gene function is expressed may be lymphocytes rather than monocytes and macrophages.

Author(s):  
Teresa Lopes Ramos ◽  
Estefanía García-Guerrero ◽  
Teresa Caballero-Velázquez ◽  
Alfonso Rodríguez-Gil ◽  
Rocío Caracuel-García ◽  
...  

AbstractIn this study, we aimed to modify the immune response in the long term after allogeneic bone marrow transplantation (allo-BMT) by using the proteasome inhibitor ixazomib (IXZ) at the late stages of the post-transplant period. This approach facilitated the immune reconstitution after transplantation. IXZ significantly prolonged survival and decreased the risk of chronic graft-versus-host disease (cGvHD) in two different murine models without hampering the graft-versus-leukemia (GvL) effect, as confirmed by bioluminescence assays. Remarkably, the use of IXZ was related to an increase of regulatory T cells both in peripheral blood and in the GvHD target organs and a decrease of effector donor T cells. Regarding B cells, IXZ treated mice had faster recovery of B cells in PB and of pre-pro-B cells in the bone marrow. Mice receiving ixazomib had a lower number of neutrophils in the GvHD target organs as compared to the vehicle group. In summary, delayed administration of IXZ ameliorated cGvHD while preserving GvL and promoted a pro-tolerogenic immune response after allo-BMT.


Blood ◽  
2000 ◽  
Vol 95 (9) ◽  
pp. 2754-2759 ◽  
Author(s):  
Geoffrey R. Hill ◽  
James L. M. Ferrara

Acute graft-versus-host disease (GVHD), the major complication of allogeneic bone marrow transplantation (BMT), limits the application of this curative but toxic therapy. Studies of inflammatory pathways involved in GVHD in animals have shown that the gastrointestinal (GI) tract plays a major role in the amplification of systemic disease. Damage to the GI tract increases the translocation of inflammatory stimuli such as endotoxin, which promotes further inflammation and additional GI tract damage. The GI tract is therefore critical to the propagation of the “cytokine storm” characteristic of acute GVHD. Experimental approaches to the prevention of GVHD include reducing the damage to the GI tract by fortification of the GI mucosal barrier through novel “cytokine shields” such as IL-11 or keratinocyte growth factor. Such strategies have reduced GVHD while preserving a graft-versus-leukemia effect in animal models, and they now deserve formal testing in carefully designed clinical trials.


Sign in / Sign up

Export Citation Format

Share Document