scholarly journals BIOLOGICAL EXPRESSIONS OF LYMPHOCYTE ACTIVATION

1973 ◽  
Vol 137 (3) ◽  
pp. 649-659 ◽  
Author(s):  
Robert R. Rich ◽  
Carl W. Pierce

A population of thymus-derived lymphocytes has been identified that, upon activation by the nonspecific plant mitogen concanavalin A, suppresses the development of plaque-forming cell responses in fresh or 48-h antigen-stimulated cultures of mouse spleen cells. Suppressor cells can inhibit both primary and secondary IgM and IgG responses in vitro. X-irradiation before activation of peripheral thymus-derived cells by concanavalin A abrogates generation of suppressor cells. After a 48 h activation period, however, the function of concanavalin A-activated suppressor cells is radioresistant. As yet uncertain is whether these suppressor cells are a population of cells distinct from thymus-derived "helper" cells. In certain important regards, the cells mediating these two opposing functions share similar characteristics; the effect observed may be determined by the circumstances of activation or the numbers of activated cells, and may consequently represent different functions of a single thymus-derived regulator cell population.

1974 ◽  
Vol 140 (3) ◽  
pp. 648-659 ◽  
Author(s):  
Judith A. Kapp ◽  
Carl W. Pierce ◽  
Stuart Schlossman ◽  
Baruj Benacerraf

In recent studies we have found that GAT not only fails to elicit a GAT-specific response in nonresponder mice but also specifically decreases the ability of nonresponder mice to develop a GAT-specific PFC response to a subsequent challenge with GAT bound to the immunogenic carrier, MBSA. Studies presented in this paper demonstrate that B cells from nonresponder, DBA/1 mice rendered unresponsive by GAT in vivo can respond in vitro to GAT-MBSA if exogenous, carrier-primed T cells are added to the cultures. The unresponsiveness was shown to be the result of impaired carrier-specific helper T-cell function in the spleen cells of GAT-primed mice. Spleen cells from GAT-primed mice specifically suppressed the GAT-specific PFC response of spleen cells from normal DBA/1 mice incubated with GAT-MBSA. This suppression was prevented by pretreatment of GAT-primed spleen cells with anti-θ serum plus C or X irradiation. Identification of the suppressor cells as T cells was confirmed by the demonstration that suppressor cells were confined to the fraction of the column-purified lymphocytes which contained θ-positive cells and a few non-Ig-bearing cells. The significance of these data to our understanding of Ir-gene regulation of the immune response is discussed.


1981 ◽  
Vol 154 (5) ◽  
pp. 1382-1389 ◽  
Author(s):  
D H Sherr ◽  
S T Ju ◽  
M E Dorf

The fine specificity of anti-idiotypic, effector-phase suppressor T cells (Ts2) induced by the intravenous injection of syngeneic spleen cells covalently coupled with the 4-hydroxy-3-nitrophenyl acetyl (NP) hapten was studied in an in vitro plaque-forming cell system. By comparing the ability of these suppressor cells to bind monoclonal anti-NP antibodies that express different levels of serologically detected NPb idiotypic determinants, it was shown that anti-idiotypic suppressor T cells do not recognize the predominant NPb idiotypic determinants that are defined by serologic analysis. The implications for the possible expression and/or recognition of different sets of idiotypic determinants on T and B cells are discussed.


1983 ◽  
Vol 11 (4) ◽  
pp. 233-237
Author(s):  
Calbert A. Laing ◽  
Curla S. Walters

1981 ◽  
Vol 153 (3) ◽  
pp. 640-652 ◽  
Author(s):  
D H Sherr ◽  
S T Ju ◽  
J Z Weinberger ◽  
B Benacerraf ◽  
M E Dorf

The ability of suppressor cells induced by the intravenous administration of 4-hydro-3-nitrophenyl acetyl (NP)-modified syngeneic cells to reduce an idiotypic B cell response was studied in both an in vivo and an in vitro system. Idiotype-positive B cells were assayed by the ability of guinea pig anti-idiotypic antiserum to specifically inhibit idiotype-positive plaque formation. It was found that up to 57% of the PFC response in vivo and 100% of the PFC response in vitro was inhibitable with antiidiotypic antiserum. The expression of these idiotype-positive B cells could be suppressed by the transfer of spleen cells form mice treated 7 d previously with NP coupled syngeneic cels. T cells are both required and sufficient for the transfer of idiotype specific suppression. The induction of these idiotype-specific T suppressor cells directly with antigen suggests that recognition of unique determinants on cell surfaces is important for regulation of lymphoid cell interactions. The role of idiotype-specific suppressor cells in the network of lymphoid interactions is discussed.


1973 ◽  
Vol 137 (2) ◽  
pp. 205-223 ◽  
Author(s):  
Robert R. Rich ◽  
Carl W. Pierce

The effects of nonspecific phytomitogens on primary plaque-forming cell (PFC) responses of mouse spleen cells to heterologous erythrocytes in vitro were studied. Spleen cell cultures treated with concanavalin A or phytohemagglutinin in vitro or established with spleen cells derived from mice injected with concanavalin A 24 h previously were similarly affected. In both cases, submitogenic doses resulted in substantial enhancement of PFC responses, whereas 10-fold larger doses were profoundly inhibitory. In contrast to the suppressive effects of mitogenic doses of phytomitogens added at culture initiation, addition of these same doses to cultures 48 h later resulted in increased PFC responses. This enhancement could be observed within 1 h after treatment and consequently could not be ascribed only to mitotic expansion of the antibody-synthesizing clone. Activation of spleen cells with specific antigen before mitogen treatment was not required for expression of the enhancing or suppressing effects on PFC responses. IgM and IgG PFC responses were similarly affected. Studies of cell interactions revealed that as few as 105 spleen cells obtained from mice treated with concanavalin A in vivo synergistically enhanced the PFC responses of 107 normal spleen cells. This enhancement was mediated by mitogen-activated T lymphocytes which were resistant to 2000 R irradiation 24 h after activation. The relevance of these observations to emerging concepts of helper and suppressor T cell activity is discussed.


1976 ◽  
Vol 143 (4) ◽  
pp. 919-936 ◽  
Author(s):  
D Redelman ◽  
C B Scott ◽  
H W Sheppard ◽  
S Sell

The late B-cell proliferative phase of the in vitro antibody response by rabbit spleen cells is highly susceptible to suppression by activated T cells. The in vitro antisheep erythrocyte plaque-forming cell (PFC) response by spleen cells from normal or primed rabbits can be suppressed by adding concanavalin A (Con A), Con A-prestimulated peripheral blood or spleen lymphocytes, or supernates from Con A-prestimulated peripheral blood lymphocytes. The suppression is not mediated by a direct interaction of Con A with responding cells as shown by the effectiveness of prestimulated cells. Primed spleen cultures remain sensitive to Con A suppression as late as 72 h after initiation, and the addition of Con A after 24-72 h rapidly stops the increase in the number of PFC. T cells are required for Con A addition to be effective but the suppression can be induced at a time when T-helper cells are no longer necessary. Further, the suppressive effect of Con A addition is abrogated by specific antisera to rabbit T cells. We propose that Con A activates suppressor T cells which then exert their effects on proliferating PFC or their immediate precursor B cells. The early inductive or recruitment phase of the response is probably not blocked by suppressor cells. Also, there is an apparent relationship between the number of proliferating B cells and the number of suppressor cells required. Finally, the difficulties in inducing a stimulatory effect by Con A and the prolonged period that Con A addition is suppressive suggests that the rabbit has relatively more and/or longer-lived suppressor cells than the mouse and may be a particularly useful species for studying suppressive phenomena and their mechanisms.


1976 ◽  
Vol 144 (4) ◽  
pp. 996-1008 ◽  
Author(s):  
J R Neefe ◽  
D H Sachs

Monolayers formed of normal mouse spleen cells attached to polystyrene coated with poly-L-lysine were tested for their ability to bind specifically antigen-reactive cells in normal or primed mouse spleen. 88 to greater than 98% of the activity of cytotoxic populations was removed by a single adsorption. However, normal spleen cells or spleen cells previously primed in vitro could not be depleted of their capacity to be sensitized, even when adsorption effectively removed all residual cytotoxic activity from the same previously primed population. In fact, exposure to an immunoadsorbent augmented the ultimate cytotoxicity generated in a nonspecific fashion. This augmentation was especially dramatic in the case of a previously primed population and may have reflected the removal of a nonspecific suppressor. If antigen-reactive precursors cannot be removed efficiently by adsorption, other approaches to the generation of tolerant lymphoid populations, such as specific suppression of precursor differentiation must be sought.


1979 ◽  
Vol 149 (6) ◽  
pp. 1371-1378 ◽  
Author(s):  
B S Kim

Normal BALB/c spleen cells are unresponsive in vitro to the phosphorylcholine (PC) determinant in the presence of anti-idiotype antibodies specific for the TEPC-15 myeloma protein (T15) which carries an idiotypic determinant indistinguishable from that of most anti-PC antibodies in BALB/c mice. The possibility that idiotype-specific suppressor cells may be generated during the culture period was examined by coculturing the cells with untreated syngeneic spleen cells. Cells that had been preincubated with anti-T15 idiotype (anti-T15id) antibodies and a PC-containing antigen, R36a for 3 d, were capable of specifically suppressing the anti-PC response of fresh normal spleen cells, indicating that idiotype-specific suppressor cells were generated during the culture period. The presence of specific antigen also appeared to be necessary because anti-T15id antibodies and a control antigen, DNP-Lys-Ficoll, were not capable of generating such suppressor cells. Suppressor cells were induced only in the population of spleen cells nonadherent to nylon wool and the suppressive activity was abrogated by treatment with anti-Thy 1.2 serum and complement. These results indicate that anti-idiotype antibodies and specific antigen can generate idiotype-specific suppressor T cells in vitro. These in vitro results may reflect in vivo mechanisms of idiotype suppression.


1964 ◽  
Vol 22 (2) ◽  
pp. 288 ◽  
Author(s):  
N. Fausto ◽  
A. O. Smoot ◽  
J. L. Van Lancker

Sign in / Sign up

Export Citation Format

Share Document