scholarly journals Hapten-specific T cell responses to 4-hydroxy-3-nitrophenyl acetyl. VII. Idiotype-specific suppression of plaque-forming cell responses.

1981 ◽  
Vol 153 (3) ◽  
pp. 640-652 ◽  
Author(s):  
D H Sherr ◽  
S T Ju ◽  
J Z Weinberger ◽  
B Benacerraf ◽  
M E Dorf

The ability of suppressor cells induced by the intravenous administration of 4-hydro-3-nitrophenyl acetyl (NP)-modified syngeneic cells to reduce an idiotypic B cell response was studied in both an in vivo and an in vitro system. Idiotype-positive B cells were assayed by the ability of guinea pig anti-idiotypic antiserum to specifically inhibit idiotype-positive plaque formation. It was found that up to 57% of the PFC response in vivo and 100% of the PFC response in vitro was inhibitable with antiidiotypic antiserum. The expression of these idiotype-positive B cells could be suppressed by the transfer of spleen cells form mice treated 7 d previously with NP coupled syngeneic cels. T cells are both required and sufficient for the transfer of idiotype specific suppression. The induction of these idiotype-specific T suppressor cells directly with antigen suggests that recognition of unique determinants on cell surfaces is important for regulation of lymphoid cell interactions. The role of idiotype-specific suppressor cells in the network of lymphoid interactions is discussed.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 821-821
Author(s):  
Amy Beres ◽  
Dipica Haribhai ◽  
Chelsea Tessler-Verville ◽  
Patrick Gonyo ◽  
Martin Hessner ◽  
...  

Abstract Abstract 821 Regulatory T cells defined as CD4+ and expressing the transcription factor Foxp3 have been shown to play a pivotal role in mitigating the severity of graft versus host disease (GVHD). In the course of studies designed to define the functional role of various CD4+ Treg populations in GVHD biology, we identified a novel population of CD8+ T cells that expressed Foxp3 and were induced early during this disease. While this population has been reported in patients with autoimmune disorders, the role of CD8+ Foxp3+ T cells in GVHD is unknown. To delineate the significance of this observation, we performed studies in which lethally irradiated Balb/c [H-2d] mice were transplanted with bone marrow and spleen cells from C57BL/6J [H-2b] mice that carried an EGFP reporter gene linked to Foxp3 (Foxp3EGFP). Tissues (spleen, lung, liver and colon) were harvested 5, 7, 10, 14 and 21 days post transplantation to define the temporal kinetics and absolute numbers of CD8+ Tregs during acute GVHD. We observed that CD8+ Foxp3+ T cells were detectable as early as five days post transplantation and persisted for up to three weeks in all GVHD target tissues. This cell population was present in similar percentages and absolute numbers to CD4+ Tregs in these tissue sites which is noteworthy given that the CD4+ Treg pool is comprised of two populations (natural Tregs and induced Tregs) whereas the CD8 pool is made up almost exclusively of Tregs that are induced, since only a very small percentage of CD8+ T cells from normal mice (<1.0%) constitutively express Foxp3. To determine whether the induction of CD8+ Tregs was a function of MHC disparity, we performed similar transplant studies using murine models with varying degrees of MHC incompatibility. Notably, the relative and absolute number of CD8+ Tregs were much lower in an MHC-matched, minor antigen mismatched model of GVHD [B6→Balb.B], and were absent in a model where only three amino acids distinguish donor and recipient [B6→bm1], indicating a correlation between CD8+ iTreg generation and MHC disparity between donor and host. To confirm that in vivo-induced CD8+ Tregs were suppressive, CD8+ Foxp3+ and CD4+ Foxp3+ T cells were sorted from the spleen and liver of B6→Balb/c GVHD mice six days post transplantation and examined in standard MLC suppression assays. These studies revealed that in vivo-derived CD8+ and CD4+ Tregs equally suppressed alloreactive T cell responses. Phenotypic analysis of in vivo-differentiated CD8 iTregs revealed that these cells expressed many of the same cell surface molecules as CD4+ Tregs (e.g. GITR, CD25, CD103, CTLA-4). To determine if CD8+ Foxp3+ T cells could be induced in vitro and used as adoptive therapy for GVHD prevention, purified CD8+ Foxp3EGFP– T cells were cultured with anti-CD3/CD28 antibodies, TGF-β and IL-2 for 3 days. Under these conditions, ∼30% of cells are induced to become Foxp3+. Addition of in vitro-differentiated CD8+ iTregs to a standard MLC resulted in potent suppression which was equivalent to that observed with in vitro-differentiated CD4+ Tregs. To determine whether these cells were suppressive in vivo, in vitro-differentiated CD8+ iTregs were adoptively transferred at a 1:1 Treg: effector cell ratio into lethally irradiated Balb/c mice that also received B6.PL BM and spleen cells to induce GVHD. In vitro-derived CD8+ iTregs failed to protect mice from GVHD in comparison to animals transplanted without CD8+ iTregs. This was attributable to reduced survival and the loss of Foxp3 expression in vivo. Furthermore, approximately 30–50% of these cells reverted to a proinflammatory phenotype characterized by IFN-γ secretion, similar to what has been described for in vitro-differentiated CD4+ iTregs (Beres et al, Clin Can Res, 2011). Finally, microarray studies were performed to compare the gene signatures of in vitro versus in vivo-induced CD8+ Tregs. Ontological analysis revealed that there was a 3–16 fold increase in the transcription of cytokine (e.g. IL-10) and cytotoxic (granzyme A, perforin, granzyme B) pathway genes in in vivo versus in vitro-induced CD8+ Tregs, suggesting that the former Treg population may employ similar mechanisms of suppression as has been reported for CD4+ Tregs. In summary, these studies have identified a novel population of CD8+ Foxp3+ cells that are induced early during GVHD, are able to suppress alloreactive T cell responses, and constitute another regulatory T cell population that is operative in GVHD biology. Disclosures: No relevant conflicts of interest to declare.


1976 ◽  
Vol 143 (4) ◽  
pp. 728-740 ◽  
Author(s):  
V Kumar ◽  
T Caruso ◽  
M Bennett

Friend leukemia virus (FV) suppressed the proliferative responses of spleen, lymph node, marrow, and thymus cell populations to various T- and B-cell mitogens. Cells taken from mice, e.g. BALB/c genetically susceptible to leukemogenesis in vivo were much more susceptible to suppression of mitogenesis in vitro than similar cells from genetically resistant mice, e.g., C57BL/6. Nylon wool-purified splenic T cells from BALB/c and C3H mice lost susceptibility to FV-induced suppression of mitogenesis but became suppressible by addition of 10% unfiltered spleen cell. Thus, FV mediates in vitro suppression of lymphocyte proliferation indirectly by "activating" a suppressor cell. The suppressor cell adhered to nylon wool but not to glass wool or rayon wool columns. Pretreatment of spleen cells with carbonyl iron and a magnet did not abrogate the suppressor cell function. Suppressor cells were not eliminated by treatment with rabbit antimouse immunoglobulin (7S) and complement (C). However, high concentrations of anti-Thy-1 plus C destroyed suppressor cells of the spleen; thymic suppressor cells were much more susceptible to anti-Thy-1 serum. Nude athymic mice were devoid of suppressor cells and their B-cell proliferation was relatively resistant to FV-induced suppression in vitro. The suppressor cells in the thymus (but not in the spleen) were eliminated by treatment of mice with cortisol. Thus, FV appears to mediate its suppressive effect on mitogen-responsive lymphocytes by affecting "T-suppressor cells." Spleen cells from C57BL/6 mice treated with 89Sr to destroy marrow-dependent (M) cells were much more suppressible by FV in virto than normal C57BL/6 spleen cells. However, nylon-filtered spleen cells of 89Sr-treated C57BL/6 mice were resistant to FV-induced suppression in vitro, indicating that the susceptibility of spleen cells from 89Sr-treated B6 mice is also mediated by suppressor cells. Normal B6 splenic T cells were rendered susceptible to FV-induced suppression of mitogenesis by addition of 10% spleen cells from 89Sr-treated B6 mice. Thus, M cells appear to regulate the numbers and/or functions of T-suppressor cells which in turn mediate the immunosuppressive effects of FV in vitro. Neither mitogen-responsive lymphocytes nor T-suppressor cells are genetically resistant or susceptible to FV. The genetic resistance to FV is apparently a function of M cells, both in vitro as well as in vivo.


1979 ◽  
Vol 149 (6) ◽  
pp. 1371-1378 ◽  
Author(s):  
B S Kim

Normal BALB/c spleen cells are unresponsive in vitro to the phosphorylcholine (PC) determinant in the presence of anti-idiotype antibodies specific for the TEPC-15 myeloma protein (T15) which carries an idiotypic determinant indistinguishable from that of most anti-PC antibodies in BALB/c mice. The possibility that idiotype-specific suppressor cells may be generated during the culture period was examined by coculturing the cells with untreated syngeneic spleen cells. Cells that had been preincubated with anti-T15 idiotype (anti-T15id) antibodies and a PC-containing antigen, R36a for 3 d, were capable of specifically suppressing the anti-PC response of fresh normal spleen cells, indicating that idiotype-specific suppressor cells were generated during the culture period. The presence of specific antigen also appeared to be necessary because anti-T15id antibodies and a control antigen, DNP-Lys-Ficoll, were not capable of generating such suppressor cells. Suppressor cells were induced only in the population of spleen cells nonadherent to nylon wool and the suppressive activity was abrogated by treatment with anti-Thy 1.2 serum and complement. These results indicate that anti-idiotype antibodies and specific antigen can generate idiotype-specific suppressor T cells in vitro. These in vitro results may reflect in vivo mechanisms of idiotype suppression.


Author(s):  
Mohammad H. Rashid ◽  
Thaiz F. Borin ◽  
Roxan Ara ◽  
Raziye Piranlioglu ◽  
Bhagelu R. Achyut ◽  
...  

AbstractMyeloid-derived suppressor cells (MDSCs) are an indispensable component of the tumor microenvironment (TME), and our perception regarding the role of MDSCs in tumor promotion is attaining extra layer of intricacy in every study. In conjunction with MDSC’s immunosuppressive and anti-tumor immunity, they candidly facilitate tumor growth, differentiation, and metastasis in several ways that yet to be explored. Alike any other cell types, MDSCs also release a tremendous amount of exosomes or nanovesicles of endosomal origin and partake in intercellular communications by dispatching biological macromolecules. There has not been any experimental study done to characterize the role of MDSCs derived exosomes (MDSC exo) in the modulation of TME. In this study, we isolated MDSC exo and demonstrated that they carry a significant amount of proteins that play an indispensable role in tumor growth, invasion, angiogenesis, and immunomodulation. We observed higher yield and more substantial immunosuppressive potential of exosomes isolated from MDSCs in the primary tumor area than those are in the spleen or bone marrow. Our in vitro data suggest that MDSC exo are capable of hyper activating or exhausting CD8 T-cells and induce reactive oxygen species production that elicits activation-induced cell death. We confirmed the depletion of CD8 T-cells in vivo by treating the mice with MDSC exo. We also observed a reduction in pro-inflammatory M1-macrophages in the spleen of those animals. Our results indicate that immunosuppressive and tumor-promoting functions of MDSC are also implemented by MDSC-derived exosomes which would open up a new avenue of MDSC research and MDSC-targeted therapy.


1973 ◽  
Vol 137 (2) ◽  
pp. 411-423 ◽  
Author(s):  
John W. Moorhead ◽  
Curla S. Walters ◽  
Henry N. Claman

Both thymus-derived (T) and bone marrow-derived (B) lymphocytes participate in the response to a hapten 4-hydroxy-3-iodo-5-nitrophenylacetic acid (NIP), coupled to a nonimmunogenic isologous carrier, mouse gamma globulin (MGG). Spleen cells from mice immunized with NIP-MGG show increased DNA synthesis in vitro when cultured with NIP-MGG. The participation of and requirement for T cells in the response was demonstrated by treating the spleen cells with anti-θ serum. This treatment resulted in a 77% inhibition of the antigen response. Furthermore, adoptively transferred normal thymus cells could be specifically "activated" by NIP-MGG in vivo and they responded secondarily to the antigen in vitro. The active participation of B cells in the secondary response was demonstrated by passing the immune spleen cells through a column coated with polyvalent anti-MGG serum. Column filtration reduced the number of NIP-specific plaque-forming cells and NIP-specific rosette-forming cells (both functions of B cells) and produced a 47% inhibition of the NIP-MGG response. The ability of the cells to respond to phytohemagglutinin (PHA) was not affected by column filtration showing that T cells were not being selectively removed. The participation of B cells in the in vitro NIP-MGG response was also shown by treatment of the spleen cells with antiserum specific for MGG and MGG determinants. B cells were removed by treatment with anti-IgM or polyvalent anti-MGG serum plus complement, resulting in a respective 46 and 49% inhibition of the response to NIP-MGG. (Treatment with anti-IgM serum had no effect on T cells.) The contribution of the hapten NIP to stimulation of T cells was investigated using NIP-MGG-activated thymus cells. These activated T cells responded in vitro very well to the NIP-MGG complex but not to the MGG carrier alone demonstrating the requirement of the hapten for T cell stimulation. The response was also partially inhibited (41%) by incubating the activated cells with NIP coupled to a single amino acid (epsilon-aminocaproic acid) before addition of NIP-MGG. These results demonstrated that T cells recognize the hapten NIP when it is coupled to the isologous carrier MGG.


1974 ◽  
Vol 140 (3) ◽  
pp. 648-659 ◽  
Author(s):  
Judith A. Kapp ◽  
Carl W. Pierce ◽  
Stuart Schlossman ◽  
Baruj Benacerraf

In recent studies we have found that GAT not only fails to elicit a GAT-specific response in nonresponder mice but also specifically decreases the ability of nonresponder mice to develop a GAT-specific PFC response to a subsequent challenge with GAT bound to the immunogenic carrier, MBSA. Studies presented in this paper demonstrate that B cells from nonresponder, DBA/1 mice rendered unresponsive by GAT in vivo can respond in vitro to GAT-MBSA if exogenous, carrier-primed T cells are added to the cultures. The unresponsiveness was shown to be the result of impaired carrier-specific helper T-cell function in the spleen cells of GAT-primed mice. Spleen cells from GAT-primed mice specifically suppressed the GAT-specific PFC response of spleen cells from normal DBA/1 mice incubated with GAT-MBSA. This suppression was prevented by pretreatment of GAT-primed spleen cells with anti-θ serum plus C or X irradiation. Identification of the suppressor cells as T cells was confirmed by the demonstration that suppressor cells were confined to the fraction of the column-purified lymphocytes which contained θ-positive cells and a few non-Ig-bearing cells. The significance of these data to our understanding of Ir-gene regulation of the immune response is discussed.


1983 ◽  
Vol 157 (1) ◽  
pp. 141-154 ◽  
Author(s):  
P J Fink ◽  
I L Weissman ◽  
M J Bevan

To detect a strong cytotoxic T lymphocyte (CTL) response to minor histocompatibility (H) antigens in a 5-d mixed lymphocyte culture, it is necessary to use a responder that has been primed in vivo with antigen-bearing cells. It has previously been shown that minor-H-specific CTL can be primed in vivo both directly by foreign spleen cells and by presentation of foreign minor H antigens on host antigen-presenting cells. This latter route is evident in the phenomenon of cross-priming, in which H-2 heterozygous (A x B)F1 mice injected 2 wk previously with minor H-different H-2A (A') spleen cells generate both H-2A- and H-2B-restricted minor-H-specific CTL. In a study of the kinetics of direct- vs. cross-priming to minors in F1 mice, we have found that minor H-different T cells actually suppress the induction of virgin CTL capable of recognizing them. CTL activity measured from F1 mice 3-6 d after injection with viable A' spleen cells is largely H-2B restricted. The H-2A-restricted response recovers such that roughly equal A- and B-restricted activity is detected in mice as early as 8-10 d postinjection. This temporary hyporeactivity does not result from generalized immunosuppression--it is specific for those CTL that recognize the foreign minor H antigen in the context of the H-2 antigens on the injected spleen cells. The injected spleen cells that mediate this suppression are radiosensitive T cells; Lyt-2+ T cells are highly efficient at suppressing the induction of CTL in vivo. No graft vs. host reaction by the injected T cells appears to be required, as suppression of direct primed CTL can be mediated by spleen cells that are wholly tolerant of both host H-2 and minor H antigens. Suppression cannot be demonstrated by in vitro mixing experiments. Several possible mechanisms for haplotype-specific suppression are discussed, including inactivation of responding CTL by veto cells and in vivo sequestration of responding CTL by the injected spleen cells.


1974 ◽  
Vol 139 (2) ◽  
pp. 249-263 ◽  
Author(s):  
Patricia G. Spear ◽  
Gerald M. Edelman

In spite of the prenatal appearance of immunoglobulin-bearing lymphocytes and θ-positive lymphocytes in the spleens of Swiss-L mice, these mice are not able to produce detectable levels of humoral antibodies in response to antigen until after 1 wk of age. Adult levels of response are not achieved until 4–8 wk of age. In the presence of bacterial lipopolysaccharides, which can substitute for or enhance T-cell function, the B cells from young Swiss-L mice were found to be indistinguishable in function from adult B cells, both with respect to the numbers of plaque-forming cells (PFC) produced in vitro in response to antigen and with respect to the kinetics of PFC induction. The spleen cells from young Swiss-L mice are significantly less sensitive than adult spleen cells, however, to stimulation by the T cell mitogens, concanavalin A (Con A) and phytohemagglutinin (PHA). Very few Con A-responsive cells could be detected at birth but the numbers increased sharply with age until 3 wk after birth. On the other hand, PHA-responsive cells could not be detected in the spleen until about 3 wk of age. The latter cells were found to respond also to Con A, but at a lower dose (1 µg/ml) than that required for the bulk of the Con A-responsive cells (3 µg/ml). The cells that respond both to PHA and to Con A appear in the spleen at about the time that Swiss-L mice acquire the ability to produce humoral antibodies, and these cells can be depleted from the spleen by the in vivo administration of antithymocyte serum. The development of humoral immune responses in these mice therefore appears to be correlated with the appearance of recirculating T lymphocytes that are responsive both to PHA and to Con A.


Sign in / Sign up

Export Citation Format

Share Document