scholarly journals Accumulation of natural killer and cytotoxic T large granular lymphocytes in the liver during virus infection.

1986 ◽  
Vol 164 (5) ◽  
pp. 1667-1681 ◽  
Author(s):  
K W McIntyre ◽  
R M Welsh

The immunologic mechanisms involved in virus-induced hepatitis were examined by measuring the cytotoxic capabilities and the morphologic and antigenic phenotypes of leukocytes isolated from livers of virus-infected mice. Large granular lymphocytes (LGL) of both natural killer (NK) cell and cytotoxic T lymphocyte (CTL) phenotypes were found to accumulate in livers of mice infected with either the nonhepatotropic Armstrong strain of lymphocytic choriomeningitis virus (LCMV-ARM) or the hepatotropic WE strain (LCMV-WE). Between days 1 and 5 postinfection (p.i.), both viruses induced a three- to fourfold increase in NK cell lytic activity in the livers of C3H/St mice and a three- to fourfold increase in the number of LGL in the organ. These LGL were characterized as NK cells on the basis of cell surface antigens, kinetics of appearance, target cell range, and morphology. By day 7 p.i., virus-specific, H-2-restricted, Thy-1+, Lyt-2+, CTL activity was present in the liver, and its appearance correlated with a second wave of LGL accumulation. CTL activity, total leukocyte number, and CTL/LGL number were at least fivefold higher in the livers of mice infected with LCMV-WE than with LCMV-ARM. The dramatic LCMV-WE-induced day 7 increases in total leukocytes and LGL were absent in athymic nude (nu/nu) mice, suggesting that the increases were T cell-dependent. LCMV-ARM infection of C57BL/6 mice induced significant spleen CTL activity but little liver CTL activity, whereas LCMV-WE infection resulted in significant liver CTL activity but minimal spleen CTL activity. Mice infected with the cytopathic hepatotropic viruses, mouse hepatitis virus (MHV) and murine cytomegalovirus (MCMV), experienced much greater increases in liver NK/LGL by day 3 p.i. than did mice infected with LCMV or injected with the interferon-inducer poly(I-C). MHV-infected mice homozygous for the beige (bg/bg) mutation also exhibited significant increases in liver NK/LGL cell number and activity, although the activity was less than heterozygote controls, and the morphology of the LGL granules was aberrant. These data show that the LGL accumulate in virus-infected organs, in this case, the liver. An early NK/LGL influx is most pronounced during infection with cytopathic hepatotropic viruses. This initial influx of NK/LGL is followed later by an influx of CTL also possessing LGL morphology. The CTL/LGL response in the liver is significantly greater during hepatotropic virus infections, even when a strong CTL response in the spleen is lacking.

2001 ◽  
Vol 194 (1) ◽  
pp. 29-44 ◽  
Author(s):  
Keith A. Daniels ◽  
Gene Devora ◽  
Wayne C. Lai ◽  
Carey L. O'Donnell ◽  
Michael Bennett ◽  
...  

Antiviral roles of natural killer (NK) cell subsets were examined in C57BL/6 mice infected with murine cytomegalovirus (MCMV) and other viruses, including lymphocytic choriomeningitis virus (LCMV), vaccinia virus (VV), and mouse hepatitis virus (MHV). Each virus vigorously induced an NK cell infiltrate into the peritoneal cavity and liver, causing some redistributions of NK cell subsets defined by monoclonal antibody (mAb) directed against Ly49A, C/I, D, and G2. Striking results were seen with a mAb (1F8) reactive with the positively signaling molecule Ly49H, present in MCMV-resistant C57BL/6 mice. mAb 1F8 also stains Ly49 C and I, but exclusion of those reactivities with mAb 5E6, which recognizes Ly49 C and I, indicated that Ly49H+ cells infiltrated the peritoneal cavity and liver and were particularly effective at synthesizing interferon γ. Depletion of 1F8+ but not 5E6+ cells in vivo by mAb injections enhanced MCMV titers by 20-1,000-fold in the spleen and approximately fivefold in the liver. Titers of LCMV or VV were not enhanced. These anti-MCMV effects were attributed to prototypical NK1.1+CD3− NK cells and not to NK1.1+CD3+ “NK/T” cells. This is the first evidence that control of a virus infection in vivo is mediated by a distinct NK cell subset.


Pathogens ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 866
Author(s):  
Baca Chan ◽  
Maja Arapović ◽  
Laura Masters ◽  
Francois Rwandamuiye ◽  
Stipan Jonjić ◽  
...  

As the largest herpesviruses, the 230 kb genomes of cytomegaloviruses (CMVs) have increased our understanding of host immunity and viral escape mechanisms, although many of the annotated genes remain as yet uncharacterised. Here we identify the m15 locus of murine CMV (MCMV) as a viral modulator of natural killer (NK) cell immunity. We show that, rather than discrete transcripts from the m14, m15 and m16 genes as annotated, there are five 3′-coterminal transcripts expressed over this region, all utilising a consensus polyA tail at the end of the m16 gene. Functional inactivation of any one of these genes had no measurable impact on viral replication. However, disruption of all five transcripts led to significantly attenuated dissemination to, and replication in, the salivary glands of multiple strains of mice, but normal growth during acute infection. Disruption of the m15 locus was associated with heightened NK cell responses, including enhanced proliferation and IFNγ production. Depletion of NK cells, but not T cells, rescued salivary gland replication and viral shedding. These data demonstrate the identification of multiple transcripts expressed by a single locus which modulate, perhaps in a concerted fashion, the function of anti-viral NK cells.


1985 ◽  
Vol 162 (2) ◽  
pp. 472-486 ◽  
Author(s):  
K Oshimi ◽  
Y Oshimi ◽  
M Satake ◽  
H Mizoguchi

After depletion of monocytes, natural killer (NK) cells were partially purified from peripheral blood by Percoll density gradient sedimentation. The NK cells were then cultured for 1 d and assayed for their cytotoxicity against various types of normal and malignant target cells. All types of target cells tested were found to be susceptible to NK cells. The susceptible targets were autologous T and B lymphocytes, mitogen-induced T and B blasts, monocytes, large granular lymphocytes, autologous or allogeneic lymphoma and leukemia cells isolated from patients, and cultured cell lines, including those resistant to interferon-activated lymphocytes. Such a broad spectrum of cytotoxicity was demonstrated in 1 d of culture, and freshly prepared NK cells were not cytotoxic, or, if anything, were less cytotoxic. Monocytes and their supernatants, added throughout the course of culture, markedly inhibited the development of their cytotoxicity. These results may suggest that, although NK cells having ability to lyse autologous normal and malignant target cells are present in vivo, their lytic activity is regulated by coexisting monocytes.


1984 ◽  
Vol 160 (5) ◽  
pp. 1431-1449 ◽  
Author(s):  
R H Wiltrout ◽  
B J Mathieson ◽  
J E Talmadge ◽  
C W Reynolds ◽  
S R Zhang ◽  
...  

Natural killer (NK) activity in the rat and human has been attributed to cells having the morphology of large granular lymphocytes (LGL). However, this association has been less clear in the mouse, largely because of difficulties in obtaining highly enriched populations of LGL from normal spleen and blood. We have previously observed that the administration of the biological response modifier (BRM) maleic anhydride divinyl ether (MVE-2) strongly augmented NK activity in lung and liver, and the augmented NK activity coincided with increased resistance to the formation of experimental metastases in these organs. The degree of NK augmentation was most striking in the liver, an unexpected and previously unreported observation. In the present study, both MVE-2 or Corynebacterium parvum induced a dramatic augmentation of liver NK activity, which reached maximum levels 3-5 d after treatment. This augmentation of NK activity in the liver coincided with a large increase in the number of lymphoid cells with the morphological characteristics of LGL that could be isolated from enzymatically digested suspensions of perfused liver. The yield of LGL per liver following BRM treatment corresponded to a 10-50-fold increase as compared to normal mice. LGL were purified from these enzymatically digested suspensions of perfused liver by depletion of adherent cells on nylon wool columns and subsequent enrichment for low-density lymphoid cells by fractionation on Percoll density gradients. The enrichment of LGL correlated with greatly increased NK activity against YAC-1. Conversely, the higher-density fractions were depleted of both LGL and NK activity. This increase in NK activity in the liver was suppressed by in vivo treatment with anti-asialo GM1 (asGM1) serum. This treatment also resulted in a corresponding reduction in both the total number and percentage of LGL. By flow cytometry analysis, the phenotype of the majority of these highly cytolytic LGL isolated from the livers of BRM-treated mice were asGM1+, Thy-1+, Ly-5+, Qa-5+, Mac-1+, and Gma-1+, whereas these LGL were Ly-1-, Lyt-2-, L3T4-, and surface Ig-. We conclude that the livers of BRM-treated mice can provide a rich source of highly active mouse LGL that could be used for further characterization of this lymphocyte subset. Further, these studies imply a potential for BRM therapy of neoplastic or viral diseases through augmentation of organ-associated immune responses.


Blood ◽  
2008 ◽  
Vol 112 (3) ◽  
pp. 461-469 ◽  
Author(s):  
Michael A. Caligiuri

Abstract Natural killer (NK) cells were discovered more than 30 years ago. NK cells are large granular lymphocytes that belong to the innate immune system because unlike T or B lymphocytes of the adaptive or antigen-specific immune system, NK cells do not rearrange T-cell receptor or immunoglobulin genes from their germline configuration. During the past 2 decades there has been a substantial gain in our understanding of what and how NK-cells “see,” lending important insights into their functions and purpose in normal immune surveillance. The most recent discoveries in NK-cell receptor biology have fueled translational research that has led to remarkable results in treating human malignancy.


1993 ◽  
Vol 23 (3) ◽  
pp. 697-701 ◽  
Author(s):  
Marie-Véronique Clément ◽  
Sabine Legros-Maida ◽  
Annie Soulie ◽  
Jacqueline Guillet ◽  
Marilyne Sasportes

Sign in / Sign up

Export Citation Format

Share Document