human natural killer cell
Recently Published Documents


TOTAL DOCUMENTS

358
(FIVE YEARS 26)

H-INDEX

56
(FIVE YEARS 4)

2022 ◽  
Vol 119 (3) ◽  
pp. e2114134119
Author(s):  
Shoubao Ma ◽  
Tingting Tang ◽  
Xiaojin Wu ◽  
Anthony G. Mansour ◽  
Ting Lu ◽  
...  

The axis of platelet-derived growth factor (PDGF) and PDGF receptor-beta (PDGFRβ) plays prominent roles in cell growth and motility. In addition, PDGF-D enhances human natural killer (NK) cell effector functions when binding to the NKp44 receptor. Here, we report an additional but previously unknown role of PDGF-D, whereby it mediates interleukin-15 (IL-15)–induced human NK cell survival but not effector functions via its binding to PDGFRβ but independent of its binding to NKp44. Resting NK cells express no PDGFRβ and only a low level of PDGF-D, but both are significantly up-regulated by IL-15, via the nuclear factor κB signaling pathway, to promote cell survival in an autocrine manner. Both ectopic and IL-15–induced expression of PDGFRβ improves NK cell survival in response to treatment with PDGF-D. Our results suggest that the PDGF-D−PDGFRβ signaling pathway is a mechanism by which IL-15 selectively regulates the survival of human NK cells without modulating their effector functions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Baige Yao ◽  
Qinglan Yang ◽  
Yao Yang ◽  
Yana Li ◽  
Hongyan Peng ◽  
...  

Natural killer (NK) cells are a potent weapon against tumor and viral infection. Finding active compounds with the capacity of enhancing NK cell effector functions will be effective to develop new anti-cancer drugs. In this study, we initially screened 287 commercially available active compounds by co-culturing with peripheral blood mononuclear cells (PBMCs). We found that five compounds, namely, Daphnetin, MK-8617, LW6, JIB-04, and IOX1, increased the IFN-γ+ NK cell ratio in the presence of IL-12. Further studies using purified human primary NK cells revealed that Daphnetin directly promoted NK cell IFN-γ production in the presence of IL-12 but not IL-15, while the other four compounds acted on NK cells indirectly. Daphnetin also improved the direct cytotoxicity of NK cells against tumor cells in the presence of IL-12. Through RNA-sequencing, we found that PI3K-Akt-mTOR signaling acted as a central pathway in Daphnetin-mediated NK cell activation in the presence of IL-12. This was further confirmed by the finding that both inhibitors of PI3K-Akt and its main downstream signaling mTOR, LY294002, and rapamycin, respectively, can reverse the increase of IFN-γ production and cytotoxicity in NK cells promoted by Daphnetin. Collectively, we identify a natural product, Daphnetin, with the capacity of promoting human NK cell activation via PI3K-Akt-mTOR signaling in the presence of IL-12. Our current study opens up a new potential application for Daphnetin as a complementary immunomodulator for cancer treatments.


2021 ◽  
Vol 2 (4) ◽  
pp. 100874
Author(s):  
Anil Kumar ◽  
Sung June Lee ◽  
Qiao Liu ◽  
Anthony K.N. Chan ◽  
Sheela Pangeni Pokharel ◽  
...  

Author(s):  
Allyson M. Cochran ◽  
Jacki Kornbluth

Natural killer (NK) cells are critical mediators of immune function, responsible for rapid destruction of tumor cells. They kill primarily through the release of granules containing potent cytolytic molecules. NK cells also release these molecules within membrane-bound exosomes and microvesicles – collectively known as extracellular vesicles (EV). Here we report the characterization and anti-tumor function of EVs isolated from NK3.3 cells, a well described clonal normal human NK cell line. We show that NK3.3 EVs contain the cytolytic molecules perforin, granzymes A and B, and granulysin, and an array of common EV proteins. We previously reported that the E3 ubiquitin ligase, natural killer lytic-associated molecule (NKLAM), is localized to NK granules and is essential for maximal NK killing; here we show it is present in the membrane of NK3.3 EVs. NK3.3-derived EVs also carry multiple RNA species, including miRNAs associated with anti-tumor activity. We demonstrate that NK3.3 EVs inhibit proliferation and induce caspase-mediated apoptosis and cell death of an array of both hematopoietic and non-hematopoietic tumor cell lines. This effect is tumor cell specific; normal cells are unaffected by EV treatment. By virtue of their derivation from a healthy donor and ability to be expanded to large numbers, NK3.3 EVs have the potential to be an effective, safe, and universal immunotherapeutic agent.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ping Li ◽  
Julia R. Walsh ◽  
Kevin Lopez ◽  
Abdulkadir Isidan ◽  
Wenjun Zhang ◽  
...  

AbstractXenotransplantation (cross-species transplantation) using genetically-engineered pig organs offers a potential solution to address persistent organ shortage. Current evaluation of porcine genetic modifications is to monitor the nonhuman primate immune response and survival after pig organ xenotransplantation. This measure is an essential step before clinical xenotransplantation trials, but it is time-consuming, costly, and inefficient with many variables. We developed an efficient approach to quickly examine human-to-pig xeno-immune responses in vitro. A porcine endothelial cell was characterized and immortalized for genetic modification. Five genes including GGTA1, CMAH, β4galNT2, SLA-I α chain, and β2-microglobulin that are responsible for the production of major xenoantigens (αGal, Neu5Gc, Sda, and SLA-I) were sequentially disrupted in immortalized porcine endothelial cells using CRISPR/Cas9 technology. The elimination of αGal, Neu5Gc, Sda, and SLA-I dramatically reduced the antigenicity of the porcine cells, though the cells still retained their ability to provoke human natural killer cell activation. In summary, evaluation of human immune responses to genetically modified porcine cells in vitro provides an efficient method to identify ideal combinations of genetic modifications for improving pig-to-human compatibility, which should accelerate the application of xenotransplantation to humans.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zixi Wang ◽  
Di Guan ◽  
Jianxin Huo ◽  
Subhra K. Biswas ◽  
Yuhan Huang ◽  
...  

Cell metabolism plays a pivotal role in regulating the effector functions of immune cells. Stimulatory cytokines, such as interleukin (IL)-2 or IL-12 and IL-15, activate glycolysis and oxidative phosphorylation in natural killer (NK) cells to support their enhanced effector functions. IL-10, a pleiotropic cytokine, is known to suppress macrophage activation but stimulate NK cells. However, it remains unclear if IL-10 has an effect on the metabolism of human NK cells and if so, what metabolic mechanisms are affected, and how these metabolic changes are regulated and contribute to the effector functions of NK cells. In this study, we demonstrate that IL-10 upregulates both glycolysis and oxidative phosphorylation in human NK cells, and these metabolic changes are crucial for the enhanced effector functions of NK cells. Mechanistically, we unravel that IL-10 activates the mammalian target of rapamycin complex 1 (mTORC1) to regulate metabolic reprogramming in human NK cells.


2021 ◽  
Vol 10 (1) ◽  
pp. 1879530
Author(s):  
Claudia Cantoni ◽  
Martina Serra ◽  
Erica Parisi ◽  
Bruno Azzarone ◽  
Angela Rita Sementa ◽  
...  

2020 ◽  
Author(s):  
Everardo Hegewisch Solloa ◽  
Seungmae Seo ◽  
Bethany L. Mundy-Bosse ◽  
Anjali Mishra ◽  
Erik Waldman ◽  
...  

Natural killer (NK) cells are innate immune cells that reside within tissue and circulate in peripheral blood. As such, they interact with a variety of complex microenvironments, yet how NK cells engage with these varied microenvironments is not well documented. The integrin adhesome represents a molecular network of defined and predicted integrin-mediated signaling interactions. Here, we define the integrin adhesome expression profile of NK cells from tonsil, peripheral blood and those derived from hematopoietic precursors through stromal cell coculture systems. We report that the site of cell isolation and NK cell developmental stage dictate differences in expression of adhesome associated genes and proteins. Furthermore, we define differences in cortical actin content associated with differential expression of actin regulating proteins, suggesting that differences in adhesome expression are associated with differences in cortical actin homeostasis. Together, these data provide new understanding into the diversity of human NK cell populations and how they engage with their microenvironment.


Author(s):  
Elena Vendrame ◽  
Julia L. McKechnie ◽  
Thanmayi Ranganath ◽  
Nancy Q. Zhao ◽  
Arjun Rustagi ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 5216
Author(s):  
Jung-Won Choi ◽  
Soyeon Lim ◽  
Jung Hwa Kang ◽  
Sung Hwan Hwang ◽  
Ki-Chul Hwang ◽  
...  

Cancer immunotherapy is a clinically validated therapeutic modality for cancer and has been rapidly advancing in recent years. Adoptive transfer of immune cells such as T cells and natural killer (NK) cells has emerged as a viable method of controlling the immune system against cancer. Recent evidence indicates that even immune-cell-released vesicles such as NK-cell-derived exosomes also exert anticancer effect. Nevertheless, the underlying mechanisms remain elusive. In the present study, the anticancer potential of isolated extracellular vesicles (EVs) from expanded and activated NK-cell-enriched lymphocytes (NKLs) prepared by house-developed protocol was evaluated both in vitro and in vivo. Moreover, isolated EVs were characterized by using two-dimensional electrophoresis (2-DE)-based proteome and network analysis, and functional study using identified factors was performed. Our data indicated that the EVs from expanded and active NKLs had anticancer properties, and a number of molecules, such as Fas ligand, TRAIL, NKG2D, β-actin, and fibrinogen, were identified as effector candidates based on the proteome analysis and functional study. The results of the present study suggest the possibility of NK-cell-derived EVs as a viable immunotherapeutic strategy for cancer.


Sign in / Sign up

Export Citation Format

Share Document