scholarly journals Autoimmune sequence of streptococcal M protein shared with the intermediate filament protein, vimentin.

1989 ◽  
Vol 169 (2) ◽  
pp. 481-492 ◽  
Author(s):  
W Kraus ◽  
K Ohyama ◽  
D S Snyder ◽  
E H Beachey

The crossreactivity of antibodies against a renal autoimmune epitope of Streptococcus pyogenes M protein with glomerular mesangial cells was investigated. The antibodies directed against the amino acid sequence Ile-Arg-Leu-Arg of the nephritogenic type 1 M protein reacted in a fibrillar pattern with mesangial cells cultured from isolated glomeruli. In Western blots of urea-extracted mesangial proteins, the antibodies reacted with a 56-kD protein. Monoclonal and polyclonal antibodies identified the 56-kD mesangial protein as vimentin. Two synthetic peptides of human vimentin containing the sequence Arg-Leu-Arg reacted with the autoimmune antibodies raised against a streptococcal M protein peptide. These results provide evidence that the intermediate filament protein vimentin shares autoimmune epitopes with streptococcal M protein.

Development ◽  
1989 ◽  
Vol 105 (1) ◽  
pp. 61-74 ◽  
Author(s):  
J.A. Dent ◽  
A.G. Polson ◽  
M.W. Klymkowsky

We have developed a whole-mount immunocytochemical method for Xenopus and used it to map the expression of the intermediate filament protein vimentin during early embryogenesis. We used two monoclonal antibodies, 14h7 and RV202. Both label vimentin filaments in Xenopus A6 cells, RV202 reacts specifically with vimentin (Mr, 55 × 10(3] on Western blots of A6 cells and embryos. 14h7 reacts with vimentin and a second, insoluble polypeptide of 57 × 10(3) Mr found in A6 cells. The 57 × 10(3) Mr polypeptide appears to be an intermediate filament protein immunochemically related to vimentin. In the whole-mount embryo, we first found vimentin at the time of neural tube closure (stage 19) in cells located at the lateral margins of the neural tube. By stage 26, these cells, which are presumably radial glia, are present along the entire length of the neural tube and in the tail bud. Cells in the optic vesicles express vimentin by stage 24. Vimentin-expressing mesenchymal cells appear on the surface of the somites at stage 22/23; these cells appear first on anterior somites and on progressively more posterior somites as development continues. Beginning at stage 24, vimentin appears in mesenchymal cells located ventral to the somites and associated with the pronephric ducts; these ventral cells first appear below the anterior somites and later appear below more posterior somites. The dorsal fin mesenchyme expresses vimentin at stage 26. In the head, both mesodermally-derived and neural-crest-derived mesenchymal tissues express vimentin by stage 26. These include the mesenchyme of the branchial arches, the mandibular arch, the corneal epithelium, the eye, the meninges and mesenchyme surrounding the otic vesicle. By stage 33, vimentin-expressing mesenchymal cells are present in the pericardial cavity and line the vitelline veins. Vimentin expression appears to be a marker for the differentiation of a subset of central nervous system cells and of head and body mesenchyme in the early Xenopus embryo.


1987 ◽  
Vol 88 (5) ◽  
pp. 649-655
Author(s):  
F.K. Gyoeva ◽  
E.V. Leonova ◽  
V.I. Rodionov ◽  
V.I. Gelfand

The distribution and chemical composition of intermediate filaments in cultured melanophores of two teleost species - Gymnocorymbus ternetzi and Pterophyllum scalare - were studied by immunofluorescence staining and immunoblotting techniques. The immunofluorescence staining of the melanophores with monoclonal and polyclonal antibodies to the intermediate filament protein vimentin revealed a system of fibrils radiating from the cell centre. These fibrils were resistant to 0.6 M-KCl and nocodazole treatments as has been found in other cell types. Transmission electron microscopy confirmed the presence of intermediate filaments in melanophores. Immunoblotting experiments showed the presence of the intermediate filament protein vimentin in melanophore lysates. Therefore, teleost melanophores possess a developed radial system of vimentin intermediate filaments.


1989 ◽  
Vol 264 (8) ◽  
pp. 4619-4627
Author(s):  
J M Aletta ◽  
M L Shelanski ◽  
L A Greene

2005 ◽  
Vol 280 (17) ◽  
pp. 16882-16890 ◽  
Author(s):  
Svetlana Ermakova ◽  
Bu Young Choi ◽  
Hong Seok Choi ◽  
Bong Seok Kang ◽  
Ann M. Bode ◽  
...  

1993 ◽  
Vol 104 (4) ◽  
pp. 1263-1272 ◽  
Author(s):  
C.A. Bossie ◽  
M.M. Sanders

A novel intermediate filament cDNA, pG-IF, has been isolated from a Drosophila melanogaster embryonic expression library screened with a polyclonal antiserum produced against a 46 kDa cytoskeletal protein isolated from Kc cells. This 46 kDa protein is known to be immunologically related to vertebrate intermediate filament proteins. The screen resulted in the isolation of four different cDNA groups. Of these, one has been identified as the previously characterized Drosophila nuclear lamin cDNA, Dm0, and a second, pG-IF, demonstrates homology to Dm0 by cross hybridization on Southern blots. DNA sequence analysis reveals that pG-IF encodes a newly identified intermediate filament protein in Drosophila. Its nucleotide sequence is highly homologous to nuclear lamins with lower homology to cytoplasmic intermediate filament proteins. pG-IF predicts a protein of 621 amino acids with a predicted molecular mass of 69,855 daltons. In vitro transcription and translation of pG-IF yielded a protein with a SDS-PAGE estimated molecular weight of approximately 70 kDa. It contains sequence principles characteristic of class V intermediate filament proteins. Its near neutral pI (6.83) and the lack of a terminal CaaX motif suggests that it may represent a lamin C subtype in Drosophila. In situ hybridization to polytene chromosomes detects one band of hybridization on the right arm of chromosome 2 at or near 51A. This in conjunction with Southern blot analysis of various genomic digests suggests one or more closely placed genes while Northern blot analysis detects two messages in Kc cells.


Sign in / Sign up

Export Citation Format

Share Document