scholarly journals Xenogeneic proliferation and lymphokine production are dependent on CD4+ helper T cells and self antigen-presenting cells in the mouse.

1990 ◽  
Vol 172 (2) ◽  
pp. 567-575 ◽  
Author(s):  
R D Moses ◽  
R N Pierson ◽  
H J Winn ◽  
H Auchincloss

We studied proliferation and interleukin 2 production by B6 mouse spleen cells in response to stimulation by irradiated cynomolgus monkey spleen cells and compared the results with responses against whole MHC-disparate allogeneic controls (BALB/c). We found that (a) primary xenogeneic helper responses were absent, whereas primary allogeneic responses were brisk, (b) secondary xenogeneic helper responses were dependent on CD4+ T cells and responder antigen-presenting cells (APCs), whereas allogeneic responses could be mediated by either CD4+ or CD8+ T cells independently and were primarily dependent on the presence of stimulator APCs, and (c) secondary xenogeneic helper responses were blocked by an antibody directed against responder class II MHC molecules. These results suggest that mouse helper T cells recognize disparate xenoantigens as processed peptides in association with self class II MHC molecules, similar to the recognition of nominal antigens and unlike direct allo-recognition.

1998 ◽  
Vol 66 (2) ◽  
pp. 664-669 ◽  
Author(s):  
Cinzia Retini ◽  
Anna Vecchiarelli ◽  
Claudia Monari ◽  
Francesco Bistoni ◽  
Thomas R. Kozel

ABSTRACT This report examines the effect of the major capsular polysaccharide of Cryptococcus neoformans, glucuronoxylomannan (GXM), on the antigen-presenting capability of human monocytes treated with acapsular cells of C. neoformans. We found that pretreatment of acapsular cryptococci with GXM downregulates, in a dose-dependent manner, the antigen-presenting capacity of monocytes, leading to reduced proliferative T-lymphocyte responses. Similar levels of suppression occurred when monocytes were exposed to encapsulated cryptococci or acapsular cryptococci that were pretreated with GXM. The magnitude of the T-cell response correlated with the ability of monocytes to ingest the yeast. Supernatant fluids from cocultures of monocytes and T cells cultured with encapsulated cryptococci contained higher levels of interleukin-10 (IL-10) than supernatant fluids of cells with acapsular cryptococci. Addition of anti-IL-10 monoclonal antibodies to the incubation medium of monocytes and T cells cultured with encapsulated cryptococci restored proliferative T-cell responses to levels observed during culture with acapsular cryptococci. Finally, treatment of monocytes with encapsulated cryptococci or GXM-treated acapsular cryptococci suppressed expression of class II major histocompatibility complex (MHC) molecules in a manner consistent with previous reports of IL-10-mediated suppression of class II MHC molecules and suppression of proliferative T-cell responses. These results suggest a link between GXM encapsulation, increased IL-10 synthesis by monocytes, decreased expression of class II MHC molecules on monocytes, and reduced proliferative T-cell responses.


2020 ◽  
Vol 8 (3) ◽  
pp. 144-156
Author(s):  
Şule KARATAŞ ◽  
Fatma SAVRAN OĞUZ

Introduction: Peptides obtained by processing intracellular and extracellular antigens are presented to T cells to stimulate the immune response. This presentation is made by peptide receptors called major histocompatibility complex (MHC) molecules. The regulation mechanisms of MHC molecules, which have similar roles in the immune response, especially at the gene level, have significant differences according to their class. Objective: Class I and class II MHC molecules encoded by MHC genes on the short arm of the sixth chromosome are peptide receptors that stimulate T cell response. These peptides, which will enable the recognition of the antigen from which they originate, are loaded into MHC molecules and presented to T cells. Although the principles of loading and delivering peptides are similar for both molecules, the peptide sources and peptide loading mechanisms are different. In addition, class I molecules are expressed in all nucleated cells while class II molecules are expressed only in Antigen Presentation Cells (APC). These differences; It shows that MHC class I is not expressed by exactly the same transcriptional mechanisms as MHC class II. In our article, we aimed to compare the gene expressions of both classes and reveal their similarities and differences. Discussion and Conclusion: A better understanding of the transcriptional mechanisms of MHC molecules will reveal the role of these molecules in diseases more clearly. In our review, we discussed MHC gene regulation mechanisms with presence of existing informations, which is specific to the MHC class, for contribute to future research. Keywords: MHC class I, MHC class II, MHC gene regulation, promoter, SXY module, transcription


Sign in / Sign up

Export Citation Format

Share Document